Antibacterial Activity of Kaempferia parviflora and Curcuma longa at Different Harvest Periods on Pathogenic Bacterial Isolates of Fish and Shrimp

Authors

  • Duangjai Pisuttharachai Fishery Science and Aquatic Resources, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, 17/1 M6, Chumco, Pathiu, Chumphon 86160, Thailand.
  • N Sangkhonkhet Scientist, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon, Thailand
  • N Montri Program of Horticulture, Disciplines of Technology Agriculture, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon, Thailand
  • W Nalinanon Program of Fishery Science and Aquatic Resources, Disciplines of Technology Agriculture, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon, Thailand

DOI:

https://doi.org/10.17501/23861282.2020.6101

Keywords:

Kaempferia parviflora, Curcuma longa, ethanol extracts, antibacterial activity, harvest period

Abstract

Due to food safety and public health concerns, much interest has been placed on
antibacterials derived from natural products for use in aquaculture. Kaempferia parviflora and
Curcuma longa, herbs that can be found in Thailand, have been shown to possess antibacterial
properties. The biological activities of these herbs, however, was found to be dependent on age.
Here, ethanol extracts of K. parviflora and C. longa harvested at different periods were evaluated for
their antibacterial activity against 5 strains of bacteria, pathogenic to aquatic animals, using disc
diffusion method. Our results revealed that K. parviflora ethanol extracts at 9 and 10 months after
planting showed antibacterial activity only against Vibrio harveyi and V. parahaemolyticus, while C.
longa ethanol extracts at 7, 8, 9 and 10 months after planting exhibited antibacterial activity against
V. harveyi, V. parahaemolyticus, Edwardsiella tarda and Streptococcus agalactiae. Both K.
parviflora and C. longa ethanol extracts show no inhibitory effect on Escherichia coli. Comparison
of the zone of inhibitions suggest that the suitable time to harvest K. parviflora and C. longa for
ethanol extraction was 9 and 10 months after planting, respectively. The minimum inhibitory
concentrations of K. parviflora and C. longa ethanol extracts during the above mentioned periods
ranged from 12.50 to 50.00 and 3.12 to 50.00 mg/ml, respectively. In conclusion, both herbs have
exhibited antibacterial activity against V. harveyi, V. parahaemolyticus, E. tarda and S. agalactiae.
C. longa ethanol extract, specifically, showed better inhibitory properties and can thus be potentially
useful for aquaculture in the treatment of bacterial infections

Downloads

Download data is not yet available.

References

Ahmad, A., Kaleem, M., Ahmed, Z., & Shafiq, H. (2015). Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-A review. Food Research International, 77, 221-235.
Ammon, H. P., & Wahl, M. A. (1991). Pharmacology of Curcuma longa. Planta Medica, 57(1), 1-7. https://doi.org/10.1055/s-2006-960004
Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807-818. https://doi.org/10.1021/mp700113r
Boonyanugomol, W., Kraisriwattana, K., Rukseree, K., Boonsam, K., & Narachai, P. (2017). In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. Journal of Infection and Public Health, 10(5), 586-592. https://doi.org/10.1016/j.jiph.2017.01.008
Chaichanawongsaroj, N., Amonyingcharoen, S., Saifah, E., & Poovorawan, Y. (2010). The effects of Kaempferia parviflora on anti-internalization activity of Helicobacter pylori to HEp-2 cells. African Journal of Biotechnology, 9, 4796-4801.
Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totté, J., Pieters, L., & Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology, 79(2), 213-220. https://doi.org/10.1016/s0378-8741(01)00384-1
Cooray, N., Jansz, E.R., Ranatunga, J., & Wimalasena, S. (1988). Effect of maturity on some chemical constituents of turmeric (Curcuma longa L.). Journal of the National Science Foundation of Sri Lanka, 16, 39.
Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
De Conti Lourenço, R. M., da Silva Melo, P., & de Almeida, A. B. A. (2013). Flavonoids as antifungal agents. In: Razzaghi-Abyaneh, M. & Rai, M. (eds) Antifungal metabolites from plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_10
Elshamy, A. I., Mohamed, T. A., Essa, A. F., Abd-ElGawad, A. M., Alqahtani, A. S., Shahat, A. A., Yoneyama, T., Farrag, A., Noji, M., El-Seedi, H. R., Umeyama, A., Paré, P. W., & Hegazy, M. F. (2019). Recent Advances in Kaempferia Phytochemistry and Biological Activity: A Comprehensive Review. Nutrients, 11(10), 2396. https://doi.org/10.3390/nu11102396
Gupta, S., & Ravishankar, S. (2005). A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathogens and Disease, 2(4), 330-340. https://doi.org/10.1089/fpd.2005.2.330
Jeong, D., Kim, D., Chon, J., Kim, H., Lee, S., Kim, H., Yim, J., Song, K., Kang, I., Kim, Y., Park, J., Jang, H., Kang, S., Kim, S., & Seo, K. (2016). Antibacterial effect of crude extracts of Kaempferia parviflora (Krachaidam) against Cronobacter spp. and Enterohemorrhagic Escherichia coli (EHEC) in various dairy foods: A preliminary study. Journal of Milk Science and Biotechnology, 34(2), 63-68.
Kim, H. J., Yoo, H. S., Kim, J. C., Park, C. S., Choi, M. S., Kim, M., Choi, H., Min, J. S., Kim, Y. S., Yoon, S. W., & Ahn, J. K. (2009). Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology, 124(2), 189-196. https://doi.org/10.1016/j.jep.2009.04.046
Kitwetcharoen, H., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2020). A high potential of Kaempferia parviflora cell culture for phenolics and flavonoids production. Journal of Applied Sciences, 20(3), 109-118.
Kummee, S., Tewtrakul, S., & Subhadhirasakul, S. (2008). Antimicrobial activity of the ethanol extract and compounds from the rhizomes of Kaempferia parviflora. Songklanakarin Journal of Science and Technology, 30(4), 463-466.
Lawhavinit, O., Kongkathip, N., & Kongkathip, B. (2010). Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart Journal. Natural Sciences, 44, 364-371.
Mbata, T. I., Debiao, L. U., & Saikia, A. (2008). Antibacterial activity of the crude extract of Chinese green tea (Camellia sinensis) on Listeria monocytogenes. African Journal of Biotechnology, 7(10), 1571-1573.
Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014, 186864. https://doi.org/10.1155/2014/186864
Naz, S., Jabeen, S., Ilyas, S., Manzoor, F., Aslam, F., & Ali, A. (2010). Antibacterial activity of Curcuma longa varieties against different strains of bacteria. Pakistan Journal of Botany, 42, 455-462.
Niamsa, N., & Sittiwet, C. (2009). Antimicrobial activity of Curcuma longa aqueous extract. Journal of Pharmacology and Toxicology, 4(4), 173-177.
Raeisi, M., Tajik, H., Razavi, R. S., Maham, M., Moradi, M., Hajimohammadi, B., Naghili, H., Hashemi, M., & Mehdizadeh, T. (2012). Essential oil of tarragon (Artemisia dracunculus) antibacterial activity on Staphylococcus aureus and Escherichia coli in culture media and Iranian white cheese. Iranian Journal of Microbiology, 4(1), 30-34.
Rahman, Z. A., Shukor, S. A., Abbas, H., Machap, C., Alias, M. S., Mirad, R., Sofiyanand, S., & Othman, A. N. (2018). Optimization of extraction conditions for total phenolics and total flavonoids from Kaempferia parviflora rhizomes. Advances in Bioscience and Biotechnology, 9, 205-214.
Raji, E. F. P. A., Ibrahim, R., & Tarek, N. (2018). Antibacterial activity of Curcuma longa, Opuntia ficus-indica and Linum usitatissimum. MedCrave Online Journal of Toxicology, 4(3), 214-220. DOI: 10.15406/mojt.2018.04.00102
Remadevi, R., Surendran, E., & Kimura, T. (2007). Turmeric in traditional medicine. In: Ravindran, P. N., Nirmal Babu, K., & Sivaraman, K. (eds) Turmeric: the genus Curcuma. CRC Press, Boca Raton, London, New York.
Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture, 433, 50-61.
Rimkiene, L., Kubiliene, A., Zevzikovas, A., Kazlauskiene, D., & Jakstas, V. (2017). Variation in flavonoid composition and radical-scavenging activity in Ginkgo biloba L. due to the growth location and time of harvest. Journal of Food Quality, 2017, 6840397. https://doi.org/10.1155/2017/6840397
Rudrappa, T., & Bais, H. P. (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agricultural and Food Chemistry, 56(6), 1955-1962. https://doi.org/10.1021/jf072591j
Sookkongwaree, K., Geitmann, M., Roengsumran, S., Petsom, A., & Danielson, U. H. (2006). Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Die Pharmazie, 61(8), 717-721.
Tanasiriwattana, N., Natakuatung, S., & Tanajaro, T. (1997). Chemical composition and antimicrobial activity of essential oil from Kaempferia galanga, K. parviflora and K. angustifolia. Senior Project. Chulalongkorn University.
Wattanapitayakul, S. K., Suwatronnakorn, M., Chularojmontri, L., Herunsalee, A., Niumsakul, S., Charuchongkolwongse, S., & Chansuvanich, N. (2007). Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells. Journal of Ethnopharmacology, 110(3), 559-562. https://doi.org/10.1016/j.jep.2006.09.037
Wungsintaweekul, J., Sitthithaworn, W., Putalun, W., Pfeifhoffer, H.W., & Brantner, A. (2010). Antimicrobial, antioxidant activities and chemical composition of selected Thai spices. Songklanakarin Journal of Science and Technology, 32, 589-598.

Yao, X., Shang, E., Zhou, G., Tang, Y., Guo, S., Su, S., Jin, C., Qian, D., Qin, Y., & Duan, J. A. (2012). Comparative characterization of total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of Ginkgo biloba leaves. International Journal of Molecular Sciences, 13(8), 10305-10315. https://doi.org/10.3390/ijms130810305
Yasunaka, K., Abe, F., Nagayama, A., Okabe, H., Lozada-Pérez, L., López-Villafranco, E., Muñiz, E. E., Aguilar, A., & Reyes-Chilpa, R. (2005). Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. Journal of Ethnopharmacology, 97(2), 293-299. https://doi.org/10.1016/j.jep.2004.11.014
Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich, V., & Kittakoop, P. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia, 75(1), 89-92. https://doi.org/10.1016/j.fitote.2003.08.017
Yenjai, C., Wanich, S., Pitchuanchom, S., & Sripanidkulchai, B. (2009). Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora and biological activities. Archives of Pharmacal Research, 32(9), 1179-1184. https://doi.org/10.1007/s12272-009-1900-z

Downloads

Published

2021-05-05

How to Cite

Pisuttharachai, D., Sangkhonkhet, N., Montri, N., & Nalinanon, W. (2021). Antibacterial Activity of Kaempferia parviflora and Curcuma longa at Different Harvest Periods on Pathogenic Bacterial Isolates of Fish and Shrimp. Proceedings International Conference on Fisheries and Aquaculture, 6(1), 1–8. https://doi.org/10.17501/23861282.2020.6101