CITRUS-DERIVED BIOFLAVONOIDS: AN ALTERNATIVE APPROACH TOWARDS TREATING DIABETES, NEURODEGENERATIVE DISEASES AND CANCER

Authors

  • A Banerjee
  • S Das
  • K Roy
  • S Maity

DOI:

https://doi.org/10.17501.24246778.2024.3102

Keywords:

Synthetic drugs, Side-effects, Flavonoids, Citrus, Herbal, Alternative medicine

Abstract

Diabetes, neurodegenerative diseases and cancer are some of the major public health issues worldwide. Various synthetic drugs are available for the treatment of these diseases, however, most of them exhibit side-effects. Despite their availability, most of these drugs are unaffordable for a particular sect of population. Also, most of the commercial drugs exhibit critical effects upon long term consumption and sometimes can also be lethal. Flavonoids are bioactive polyphenols that has potent pharmacological properties. In the recent times, apigenin, quercetin and naringenin, derived from citrus plants, are used extensively in the treatment of various diseases and being herbal in nature, these compounds are reported to show no significant side-effects. These said dietary flavonoids do possess high antioxidant, anti-inflammatory, anti-hyperglycemic and anti-apoptotic properties. This review summarises the adverse effects of synthetic drugs available for treatment, suggesting the efficacy of the mentioned flavonoids as possible alternative medicinal approach against the usage of the commercial drugs. In experimental researches like cell culture and animal models, these dietary flavonoids can be used alternatively towards treating those diseases, considering their positive effects. However, further clinical trials are required on humans to check for toxicity.

Downloads

References

Al-Dasooqi, N., Bowen, J. M., Gibson, R. J., Sullivan, T., Lees, J., & Keefe, D. M. (2009). Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients. Investigational New Drugs, 27, 173–178.

Alter, P., Herzum, M., Soufi, M., Schaefer, J. R., & Maisch, B. (2006). Cardiotoxicity of 5-fluorouracil. Cardiovascular & Hematological Agents in Medicinal Chemistry, 4(1), 1–5.

Bai, X., Bian, Z., & Zhang, M. (2023). Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic roadmap to combat neurodegenerative diseases. Phytomedicine, 109, 154582.

Bolouki, A., Zal, F., & Bordbar, H. (2019). Ameliorative effects of quercetin on folliculogenesis in diabetic mice: A stereological study. Gynecological Endocrinology, 0(0), 1–5. https://doi.org/10.1080/09513590.2019.1707796

Cardoos, A., Inamori, A., Sanacora, G., Fava, M., & Mischoulon, D. (2013). Delayed amnesic syndrome after riluzole use in major depressive disorder: A case report. Psychosomatics, 54(5), 488.

Chatterjee, J., Langhnoja, J., Pillai, P. P., & Mustak, M. S. (2019). Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. Journal of Biochemical and Molecular Toxicology, 33(2), e22242.

Chen, M., Wang, X., Zha, D., et al. (2016). Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Scientific Reports, 6(1), 35468.

Ciarimboli, G. (2012). Membrane transporters as mediators of cisplatin effects and side effects. Scientifica (Cairo), 2012.

Deo, S. V. S., Sharma, J., & Kumar, S. (2022). GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Annals of Surgical Oncology, 29(11), 6497–6500.

Diener, H. C., & Kastrup, O. (2003). Neurological and general side effects of drug therapy. In Neurological Disorders (pp. 1507–1524). Elsevier.

Ding, S., Qiu, H., Huang, J., et al. (2019). Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chemical Biology Interactions, 307(April), 116–124. https://doi.org/10.1016/j.cbi.2019.05.004

Eid, H. M., Nachar, A., Thong, F., Sweeney, G., & Haddad, P. S. (2015). The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacognosy Magazine, 11(41), 74–81. https://doi.org/10.4103/0973-1296.149708

Farmaki, P., Damaskos, C., Garmpis, N., Garmpi, A., Savvanis, S., & Diamantis, E. (2021). Complications of Type 2 Diabetes Mellitus. Current Cardiology Reviews, 16(4), 249–251. https://doi.org/10.2174/1573403x1604201229115531

Feingold, K. R. (2022). Oral and injectable (non-insulin) pharmacological agents for the treatment of Type 2 Diabetes. Endotext [Internet].

Gupta, M., Singh, N., Singh, B., & Alam, P. (2022). Role of natural products in alleviation of Huntington’s disease: An overview. South African Journal of Botany, 151, 263–276.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

Hou, Y., Zhang, Y., Lin, S., et al. (2021). Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. American Journal of Translational Research, 13(4), 2006–2020.

Huszno, J., Leś, D., Sarzyczny-Słota, D., & Nowara, E. (2013). Cardiac side effects of trastuzumab in breast cancer patients: Single-center experiences. Contemporary Oncology/Onkologia, 17(2), 190–195.

Jin, T., Zhang, Y., Botchway, B. O. A., Huang, M., Lu, Q., & Liu, X. (2023). Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomedicine & Pharmacotherapy, 161, 114515.

Johnston, S. J., & Cheung, K. L. (2010). Fulvestrant: A novel endocrine therapy for breast cancer. Current Medicinal Chemistry, 17(10), 902–914.

Kapoor, R., & Kakkar, P. (2014). Naringenin accords hepatoprotection from streptozotocin-induced diabetes in vivo by modulating mitochondrial dysfunction and apoptotic signaling cascade. Toxicology Reports, 1, 569–571. https://doi.org/10.1016/j.toxrep.2014.08.002

Knox, E. G., Aburto, M. R., Clarke, G., Cryan, J. F., & O’Driscoll, C. M. (2022). The blood-brain barrier in aging and neurodegeneration. Molecular Psychiatry, 27(6), 2659–2673.

Kroeger, E., Mouls, M., Wilchesky, M., et al. (2015). Adverse drug reactions reported with cholinesterase inhibitors: An analysis of 16 years of individual case safety reports from VigiBase. Annals of Pharmacotherapy, 49(11), 1197–1206.

Landry, P., Rousseau, A., & Skalli, L. (2010). Adverse effects of antipsychotics. In Clinical Trials in Psychopharmacology: A Better Brain (pp. 337–380).

Lavrik, I., Golks, A., & Krammer, P. H. (2005). Death receptor signaling. Journal of Cell Science, 118(2), 265–267.

Lee, Y., Sung, B., Kang, Y. J., et al. (2014). Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. International Journal of Oncology, 44(5), 1599–1606.

Li, R., Chen, L., Yao, G. M., Yan, H. L., & Wang, L. (2021). Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy. International Journal of Ophthalmology, 14(1), 42–49. https://doi.org/10.18240/ijo.2021.01.06

Liu, H. J., Fan, Y. L., Liao, H. H., et al. (2017). Apigenin alleviates STZ-induced diabetic cardiomyopathy. Molecular and Cellular Biochemistry, 428(1–2), 9–21. https://doi.org/10.1007/s11010-016-2913-9

Malik, S., Suchal, K., Khan, S. I., et al. (2017). Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-ĸB-TNF-α and TGF-β1-MAPK-fibronectin pathways. American Journal of Physiology-Renal Physiology, 313. https://doi.org/10.1152/ajprenal.00393.2016

Miao, L., Zhang, H., Cheong, M. S., et al. (2023). Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells. Food Science & Human Wellness, 12(6), 1991–2000. https://doi.org/10.1016/j.fshw.2023.03.021

Monroy, G. R., Murguiondo Pérez, R., Weintraub Ben Zión, E., et al. (2023). Immunization with neural-derived peptides in neurodegenerative diseases: A narrative review. Biomedicines, 11(3), 919.

Nabavi, S. F., Khan, H., D’Onofrio, G., et al. (2018). Apigenin as a neuroprotective agent: Of mice and men. Pharmacological Research, 128, 359–365.

Neamtu, A. A., Maghiar, T. A., Alaya, A., et al. (2022). A comprehensive view on the quercetin impact on colorectal cancer. Molecules, 27(6), 1873.

Nguyen, L. T., Lee, Y. H., Sharma, A. R., et al. (2017). Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean Journal of Physiology & Pharmacology, 21(2), 205.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41

Paschou, S. A., Papadopoulou-Marketou, N., Chrousos, G. P., & Kanaka-Gantenbein, C. (2018). On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 7(1), R38–R46. https://doi.org/10.1530/EC-17-0347

Ramesh, P., Jagadeesan, R., Sekaran, S., Dhanasekaran, A., & Vimalraj, S. (2021). Flavonoids: Classification, function, and molecular mechanisms involved in bone remodeling. Frontiers in Endocrinology (Lausanne), 12(November), 1–22. https://doi.org/10.3389/fendo.2021.779638

Shukla, S., Fu, P., & Gupta, S. (2014). Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer. Apoptosis, 19, 883–894.

Silakari, P., Yadav, A., Arora, A., et al. (2024). Investigating holistic natural strategies for the management of Huntington’s disease. In BIO Web of Conferences (Vol. 86, p. 1041). EDP Sciences.

Song, H. M., Park, G. H., Eo, H. J., et al. (2015). Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin D1 in human colorectal cancer cells. Biomolecules & Therapeutics, 23(4), 339.

Tahrani, A. A., Barnett, A. H., & Bailey, C. J. (2016). Pharmacology and therapeutic implications of current drugs for Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 12(10), 566–592. https://doi.org/10.1038/nrendo.2016.86

Wang, N., Yi, W. J., Tan, L., et al. (2017). Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In Vitro Cellular & Developmental Biology-Animal, 53(6), 554–563. https://doi.org/10.1007/s11626-017-0135-4

Webber, S. (2013). International Diabetes Federation. Diabetes Research and Clinical Practice, 102. https://doi.org/10.1016/j.diabres.2013.10.013

Yadav, R. K., Mehan, S., Sahu, R., et al. (2022). Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Human & Experimental Toxicology, 41. https://doi.org/10.1177/09603271221084276

Yu, X., Li, Y., & Mu, X. (2020). Effect of quercetin on PC12 Alzheimer’s disease cell model induced by Aβ 25–35 and its mechanism based on Sirtuin1/Nrf2/HO-1 pathway. Biomed Research International, 2020.

Zaidun, N. H., Sahema, Z. C. T., Mardiana, A. A., Santhana, R. L., Latiff, A. A., & Syed Ahmad Fuad, S. B. (2019). Effects of naringenin on vascular changes in prolonged hyperglycemia in fructose-STZ diabetic rat model. Drug Discovery & Therapeutics, 13(4), 212–221. https://doi.org/10.5582/ddt.2019.01034

Zhang, J., Qiu, H., Huang, J., et al. (2018). Naringenin exhibits the protective effect on cardiac hypertrophy via EETs-PPARs activation in streptozotocin-induced diabetic mice. Biochemical & Biophysical Research Communications, 502(1), 55–61. https://doi.org/10.1016/j.bbrc.2018.05.119

Downloads

Published

2025-01-21

How to Cite

Banerjee, A., Das, S., Roy, K., & Maity, S. (2025). CITRUS-DERIVED BIOFLAVONOIDS: AN ALTERNATIVE APPROACH TOWARDS TREATING DIABETES, NEURODEGENERATIVE DISEASES AND CANCER. Proceedings of the International Conference on Food, Nutrition, Health and Lifestyle, 3(1), 24–43. https://doi.org/10.17501.24246778.2024.3102