EFFECT OF BIOCHAR ON WATER RETENSION AND LEACHING OF NUTRIENTS IN A SANDY LOAM SOIL

Authors

  • Judith Frimpong-Manso CSIR-Soil Research Institute, Academy Post Office, Kwadaso-Kumasi, Ghana
  • SA Ganiyu University for Development Studies, Ghana
  • JK Xorse University for Development Studies, Ghana

DOI:

https://doi.org/10.17501/2513258X.2022.6101

Keywords:

lysimeter, leaching, nutrient, biochar, inorganic fertilizer, moisture retention

Abstract

Nutrient leaching causes agronomic and environmental problems in intensively cultivated soils. In this study, the effect of biochar on retension of nutrient in sandy loam soil was evaluated. Upland rice was amended with 3 different sources of biochar in randomized complete design with 4 replications. The treatment included a control (no input), fertilizer, and upland rice either applied alone or in combination with the three different sources of biochar (poultry manure, corn cobs and groundnut shell). Biochar levels were 5 t ha-1 each and were incorporated into the soil at the same time. Inorganic fertilizer was applied at a rate of 90, 60, 60 and 45, 30, 30 kg ha-1 NPK, as straight fertilizer and then top-dress with nitrogen levels in the form of urea 30 kg ha-1 N eight (8) weeks after transplanting. Upland rice was planted in each lysimeter. Leachate from each lysimeter was collected at 3 weeks intervals for 24 months. For the 24 months running biochar significantly decreased the volume of water leached. Control and 90N60P60K treatments showed higher concentrations of NO3-N and K in the leachate. At a depth of 70 cm leaching significantly reduced with all the three different sources of biochar combined with 45N30P30K and 90N60P60K. The application of three different biochar sources to tropical sandy loam soil may give environmental benefits such as carbon sequestration and reduced nitrate and potassium leaching. Our results indicated that biochar and 45N30P30K combination could be appropriate as a sustainable agronomical approach.

Downloads

Download data is not yet available.

References

Adu, S. (1957). Report on the detailed soil survey of the Central Agricultural Station, Nyankpala. Soil Research Institute, Kumasi, Ghana.

Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology, 119, 156-170.

Ahmed, G. (2018). The Influence of Rice Husk Biochar and Nitrogen Sources on the Growth of Lowland Rice on an Eutric Gleysol from Walewale University Of Ghana].

Ali, I., He, L., Ullah, S., Quan, Z., Wei, S., Iqbal, A., Munsif, F., Shah, T., Xuan, Y., & Luo, Y. (2020). Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double‐cropping system. Food and Energy Security, 9(3), e208.

Antonangelo, J. A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277, 111443.

Archontoulis, S. V., Huber, I., Miguez, F. E., Thorburn, P. J., Rogovska, N., & Laird, D. A. (2016). A model for mechanistic and system assessments of biochar effects on soils and crops and trade‐offs. Gcb Bioenergy, 8(6), 1028-1045.

Baba, I. I., Abudulai, M., Musah, M. A., Dogbe, W., & Haruna, M. (2013). Effects of NERICA-cowpea intercropping systems on yield and yield components of NERICA and cowpea.

Blackwell, P., Riethmuller, G., & Collins, M. (2009). Biochar for environmental management: science and technology. Edited Lehmann J, Joseph S, Earthscan, Sterling, VA, USA, 207-226.

Borchard, N., Schirrmann, M., Cayuela, M. L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., & Ippolito, J. A. (2019). Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of the Total Environment, 651, 2354-2364.

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil science, 59(1), 39-46.

Bremner, J. M. (1996). Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5, 1085-1121.

Budai, A., Wang, L., Gronli, M., Strand, L. T., Antal Jr, M. J., Abiven, S., Dieguez-Alonso, A., Anca-Couce, A., & Rasse, D. P. (2014). Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. Journal of agricultural and food chemistry, 62(17), 3791-3799.

Budai, A., Zimmerman, A., Cowie, A., Webber, J., Singh, B., Glaser, B., Masiello, C., Andersson, D., Shields, F., & Lehmann, J. (2013). Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability. International biochar initiative, 1-10.

Buri, M., Issaka, R., Senayah, J., Fujii, H., & Wakatsuki, T. (2012). Lowland soils for rice cultivation in Ghana. In Crop production technologies (pp. 138-150). InTech England.

Cataldo, D., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80.

Chen, Q., Qin, J., Cheng, Z., Huang, L., Sun, P., Chen, L., & Shen, G. (2018). Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil. Chemosphere, 199, 402-408.

Chimouriya, S., Lamichhane, J., Gauchan, D. P., & Dhulikhel, K. (2018). Green manure for restoring and improving the soil nutrients quality. Int. J. Res, 5, 1064-1074.

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275-293.

Czimczik, C. I., & Masiello, C. A. (2007). Controls on black carbon storage in soils. Global Biogeochemical Cycles, 21(3).

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36(2), 1-18.

Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H., Nagarajan, R., Satawathananont, S., Son, T., Tan, P., & Wang, G. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(1), 37-66.

Dogbe, W., Sogbedji, J., & Buah, S. (2015). Site-specific nutrient management for lowland rice in the northern Savannah zones of Ghana. Current Agriculture Research Journal, 3(2), 109.

Downie, A., Crosky, A., & Munroe, P. (2009). Physical Properties of Biochar. Biochar for Environmental Management: Science and Technology, 13.

Fageria, N. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43(16), 2063-2113.

Faloye, O., Alatise, M., Ajayi, A., & Ewulo, B. (2017). Synergistic effects of biochar and inorganic fertiliser on maize (zea mays) yield in an alfisol under drip irrigation. Soil and Tillage Research, 174, 214-220.

Farhangi-Abriz, S., Torabian, S., Qin, R., Noulas, C., Lu, Y., & Gao, S. (2021). Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment, 775, 145869.

FAO. 1988. FAO/UNESCO Soil Map of the World Revised legend, with corrections. World Soil Resources Report 60. Rome. (Reprinted as Technical Paper 20, ISRIC, Wageningen, 1994).

Fischer, D., Erben, G., Dunst, G., & Glaser, B. (2018). Dynamics of labile and stable carbon and priming effects during composting of sludge and lop mixtures amended with low and high amounts of biochar. Waste Management, 78, 880-893.

Gao, S., & DeLuca, T. (2016). Influence of biochar on soil nutrient transformations, nutrient leaching, and crop yield. Adv. Plants Agric. Res, 4(5), 1-16.

Gao, S., & DeLuca, T. H. (2018). Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biology and Biochemistry, 126, 144-150.

Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31(7-8), 669-678.

Glaser, B., Lehmann, J., Führböter, M., Solomon, D., & Zech, W. (2001). Carbon and nitrogen mineralization in cultivated and natural savanna soils of Northern Tanzania. Biology and fertility of soils, 33(4), 301-309.

Glaser, B., Lehmann, J., & ech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35(4), 219-230.

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., & Murphy, C. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350.

Inusah, I. B., Mumuni, A., Mohammmed, A. M., Wilson, D., & Mohammed, H. (2013). Effects of NERICA-Cowpea intercropping systems on yield components and productivity of NERICA and Cowpea. African Journal of Agricultural Research, 8(48), 6323-6331.

Jalota, S., Kaur, H., Ray, S., Tripathi, R., Vashisht, B. B., & Bal, S. (2012). Mitigating future climate change effects by shifting planting dates of crops in rice–wheat cropping system. Regional Environmental Change, 12(4), 913-922.

Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., & Novak, J. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114-139.

Karim, M. R., Ishikawa, M., Ikeda, M., & Islam, M. (2012). Climate change model predicts 33% rice yield decrease in 2100 in Bangladesh. Agronomy for sustainable development, 32(4), 821-830.

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N., Meinke, H., & Hochman, Z. (2003). An overview of APSIM, a model designed for farming systems simulation. European journal of agronomy, 18(3-4), 267-288.

Kekeli, T. D. (2015). The Impact of Nutrient Management Options on Soil Organic Carbon Pools and Maize Yield in Northern Ghana University of Ghana].

Khorram, M. S., Zhang, Q., Lin, D., Zheng, Y., Fang, H., & Yu, Y. (2016). Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. Journal of environmental sciences, 44, 269-279.

Kiboi, M. N., Ngetich, K., Fliessbach, A., Muriuki, A., & Mugendi, D. N. (2019). Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya. Agricultural Water Management, 217, 316-331.

Kombiok, J. M., Buah, S. S. J., & Sogbedji, J. M. (2012). Enhancing soil fertility for cereal crop production through biological practices and the integration of organic and in-organic fertilizers in northern savanna zone of Ghana. Soil Fertility, 1, 1-30.

Kookana, R. S. (2010). The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Research, 48(7), 627-637.

Koroleff, F. (1983). Determination of ammonia. Methods of seawater analysis.

Krishna, K. R. (2013). Agroecosystems: soils, climate, crops, nutrient dynamics and productivity. CRC Press.

Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442.

Lehmann, J. (2007). Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387.

Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 1-13). Routledge.

Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249(2), 343-357.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812-1836.

Lemenih, M. (2004). Effects of land use changes on soil quality and native flora degradation and restoration in the highlands of Ethiopia (Vol. 306).

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luizao, F. J., Engelhard, M. H., Neves, E. G., & Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta, 72(24), 6069-6078.

Liu, Z., He, T., Cao, T., Yang, T., Meng, J., & Chen, W. (2017). Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. Journal of soil science and plant nutrition, 17(2), 515-528.

Lychuk, T. E., Izaurralde, R. C., Hill, R. L., McGill, W. B., & Williams, J. R. (2015). Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitigation and Adaptation Strategies for Global Change, 20(8), 1437-1458.

Mahmud, M., Abdullah, R., & Yaacob, J. S. (2018). Effect of vermicompost amendment on nutritional status of sandy loam soil, growth performance, and yield of pineapple (Ananas comosus var. MD2) under field conditions. Agronomy, 8(9), 183.

Major, J. (2009). Biochar Application To A Colombian Savanna Oxisol: Fate And Effect On Soil Fertility, Crop Production, Nutrient Leaching And Soil Hydrology Volume I.

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of environmental quality, 41(4), 1076-1086.

Maxfield, T. (2017). Short-term stability and function of charcoal in soil and its relevance to Ghanaian subsistence agriculture.

Meisinger, J. J., & Delgado, J. A. (2002). Principles for managing nitrogen leaching. Journal of soil and water conservation, 57(6), 485-498.

Musah, K. (2019). Effect of timing of basal fertilizer application on yield of three rice (oryza sativa l.) varieties in Guinea Savanna ecological zone

Musah, M., Baba, I. I., Dogbe, W., Abudulai, M., Mutari, A., & Haruna, M. (2013). NERICA intercrop systems and their influence on yield components and productivity of NERICA and partner crops in the Guinea Savannah Zone of Ghana. International Journal of AgriScience, 3(12), 881-893.

Nelissen, V., Saha, B. K., Ruysschaert, G., & Boeckx, P. (2014). Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biology and Biochemistry, 70, 244-255.

Nguyen, T. H., Brown, R. A., & Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochemistry, 35(3), 217-234.

Nguyen, T. T. N., Wallace, H. M., Xu, C.-Y., Zwieten, L. V., Weng, Z. H., Xu, Z., Che, R., Tahmasbian, I., Hu, H.-W., & Bai, S. H. (2018). The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 636, 142-151.

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105-112.

Obeng, H. (2000). Soil classification in Ghana. Selected Economic Issues, 3, 1-35.

Obodai, M. S. (2018). Phosphorus fractions of biochar-amended plinthalqualf under clean and waste water irrigation regimes in northern Ghana University Of Ghana].

Oladele, S., Adeyemo, A., & Awodun, M. (2019). Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma, 336, 1-11.

Olsen, S. (1982). Sommers. LE (1982). Phosphorus. Methods of soil analysis. Part, 2, 403-430.

Oroka, F. O., & Omoregie, A. U. (2007). Competition in a rice-cowpea intercrop as affected by nitrogen fertilizer and plant population. Scientia Agricola, 64, 621-629.

Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition, 13(4), 991-1002.

Partey, S. T., Saito, K., Preziosi, R. F., & Robson, G. D. (2016). Biochar use in a legume–rice rotation system: effects on soil fertility and crop performance. Archives of Agronomy and Soil Science, 62(2), 199-215.

Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231-242.

Rao, A. S., Reddy, K. S., & Takkar, P. (1997). Malachite green method compared to ascorbic acid for estimating small amounts of phosphorus in water, 0.01 M calcium chloride, and Olsen soil extracts. Communications in Soil Science and Plant Analysis, 28(6-8), 589-601.

Ren, H., Huang, B., Fernández-García, V., Miesel, J., Yan, L., & Lv, C. (2020). Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity. Microorganisms, 8(4), 502.

Renck, A., & Lehmann, J. (2004). Rapid water flow and transport of inorganic and organic nitrogen in a highly aggregated tropical soil. Soil science, 169(5), 330-341.

Reyes-Cabrera, J., Erickson, J. E., Leon, R. G., Silveira, M. L., & Sollenberger, L. E. (2019). Amending marginal sandy soils with biochar and lignocellulosic fermentation residual sustains fertility in elephantgrass bioenergy cropping systems. Nutrient Cycling in Agroecosystems, 115(1), 69-83.

Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A., Rutkoski, J., Schulthess, U., Sonder, K., & Tonnang, H. (2018). Role of modelling in international crop research: overview and some case studies. Agronomy, 8(12), 291.

Rhoades, J. (1993). Electrical conductivity methods for measuring and mapping soil salinity. Advances in agronomy, 49, 201-251.

Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and fertility of soils, 43(6), 699-708.

Sanchez-Monedero, M., Cayuela, M., Roig, A., Jindo, K., Mondini, C., & Bolan, N. (2018). Role of biochar as an additive in organic waste composting. Bioresource Technology, 247, 1155-1164.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., & Manning, D. A. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

Scholz, S. B., Sembres, T., Roberts, K., Whitman, T., Wilson, K., & Lehmann, J. (2014). Biochar systems for smallholders in developing countries: leveraging current knowledge and exploring future potential for climate-smart agriculture.

Sika, M. P. (2012). Effect of biochar on chemistry, nutrient uptake and fertilizer mobility in sandy soil (Doctoral dissertation, Stellenbosch: Stellenbosch University).

Šimanský, V., Horák, J., Igaz, D., Balashov, E., & Jonczak, J. (2018). Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. Journal of Soils and Sediments, 18(4), 1432-1440.

Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1), 1-13.

Steiner, C. (2008). Soil charcoal amendments maintain soil fertility and establish a carbon sink–research and prospects. In Soil ecology research developments (pp. 1-6).

Steiner, C., Das, K., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of environmental quality, 39(4), 1236-1242.

Sun, Z., Sänger, A., Rebensburg, P., Lentzsch, P., Wirth, S., Kaupenjohann, M., & Meyer-Aurich, A. (2017). Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Science of the Total Environment, 578, 557-565.

Tian, J., Miller, V., Chiu, P. C., Maresca, J. A., Guo, M., & Imhoff, P. T. (2016). Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment. Science of the Total Environment, 553, 596-606.

Troeh, F. R., and Thompson, L. M. (2005). Soils and soil fertility (Vol. 489). Oxford: Blackwell.

Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.

Ventura, M., Sorrenti, G., Panzacchi, P., George, E., & Tonon, G. (2013). Biochar reduces short‐term nitrate leaching from a horizon in an apple orchard. Journal of environmental quality, 42(1), 76-82.

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.

Wang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zou, J., Shen, Z., Lian, C., & Chen, Y. (2021). Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety, 207, 111261.

Whitman, T., Singh, B. P., Zimmerman, A. R., Lehmann, J., & Joseph, S. (2015). Priming effects in biochar-amended soils: implications of biochar-soil organic matter interactions for carbon storage. Biochar for environmental management: Science, technology and implementation, 2, 455-488.

Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environmental science & technology, 52(9), 5027-5047.

Yadav, V., Karak, T., Singh, S., Singh, A. K., & Khare, P. (2019). Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Industrial Crops and Products, 131, 96-105.

Yang, D., Yunguo, L., Shaobo, L., Huang, X., Zhongwu, L., Xiaofei, T., Guangming, Z., & Lu, Z. (2017). Potential benefits of biochar in agricultural soils: a review. Pedosphere, 27(4), 645-661.

Yao, F., Xu, Y., Lin, E., Yokozawa, M., & Zhang, J. (2007). Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80(3), 395-409.

Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467-1471.

Yeboah, E., Ofori, P., Quansah, G., & Sohi, S. (2009). Improving soil productivity through biochar amendments to soils.

Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., Kuzyakov, Y., & Xiong, Z. (2020). Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production, 242, 118435.

Downloads

Published

2022-12-08

How to Cite

Frimpong-Manso, J., Ganiyu, S., & Xorse, J. (2022). EFFECT OF BIOCHAR ON WATER RETENSION AND LEACHING OF NUTRIENTS IN A SANDY LOAM SOIL. The Proceedings of The International Conference on Climate Change, 6(1), 1–30. https://doi.org/10.17501/2513258X.2022.6101