A Systematic Review of Slash-and-Burn Agriculture as an Obstacle to Future-Proofing Climate Change


  • Kuok Ho Daniel Tang Environmental Science Program, Division of Science and Technology, BNU-HKBUUIC, 2000 Jintong Road, Tangjiawan, Zhuhai, GD 519087, China
  • Pow-Seng Yap Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China




agriculture; climate change; greenhouse gases; slash-and-burn


The recent haze affecting Malaysia, Indonesia and Singapore, as well as forest fires in the Amazon have raised global concerns on the debilitating effect of slash-and-burn agricultural practice particularly as nations are joining forces in combating climate change. With slash-and-burn still widely practised in the developing nations, this literature review aims to examine the drivers of slash-and-burn agriculture and its impacts in terms of greenhouse gas emissions and atmospheric CO2 sequestration, while suggesting alternatives to slash-and-burn agriculture. The review covers more than 80 articles on slash-and-burn agriculture, published mainly over the past 15 years. Slashand-burn agriculture has been survived by the pressure to make a living under inadequate resources, access to market and technologies, a lack of alternative livelihoods as well as loopholes in institutional mechanisms, regulations and enforcement. Slash-and-burn agriculture leads to chemical changes of soil, alteration of soil biota and species richness, and the extent of changes correlates with fallow period after slash-and-burn. Large-scale slash-and-burn for commercial agriculture and livestock farming is the major contributor of greenhouse gases and agricultural intensification shortens fallow period for recovery of ecosystems. Slash-and-burn also impacts the ability of forests to sequester atmospheric CO2 and short fallow period further reduces this ability. This review calls for alternative agricultural practices comprising two approaches namely land preparation and landuse systems, as adaptation and mitigation against climate change. Land preparation consists of mulching, improved forest conversion, mechanized land preparation and slash-and-char system.
Land-use systems however are categorized into alternative agrosystems, agroforestry, cultivated pastureland and integrated system of crop-livestock-forests. This review therefore contributes to raising awareness and proposing practical alternatives to slash-and-burn for environmental sustainability.


Download data is not yet available.


Adam, F. J., 2019, Native Customary Rights Over Land in Sarawak. Journal of Malaysian and Comparative Law; Vol 25 (1998): Journal of Malaysian and Comparative Law, Date of access: 18/01/2020. https://ejournal.um.edu.my/index.php/JMCL/article/view/16140.

Aguilar-Jiménez, C. E., Tolón-Becerra, A., and Lastra-Bravo, X. B., 2013, Traditional agroecosystems vs. alternative agroecosystems in maize in Chiapas Mexico. The Journal of Animal & Plant Sciences, 23, 633-646.

Anaya, C. A., and Huber-Sannwald, E., 2015, Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil and Tillage Research, 147, 20-29.

Bahr, E., Zaragocin, D. C., and Makeschin, F., 2014, Soil nutrient stock dynamics and land-use management of annuals, perennials and pastures after slash-and-burn in the Southern Ecuadorian Andes. Agriculture, Ecosystems & Environment, 188, 275-288.

Barkhordarian, A., Saatch, S. S., Behrangi, A., Loikith, P. C., and Mechoso, C. R., 2019, A recent systematic increase in vapor pressure deficit over tropical South America. Scientific Reports, 9(1), 15331. doi: 10.1038/s41598-019-51857-8.

Béliveau, A., Lucotte, M., Davidson, R., do Canto Lopes, L. O., Paquet, S., 2009, Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Science of The Total Environment, 407(15), 4480–4489. doi: https://doi.org/10.1016/j.scitotenv.2009.04.012.

Borges, S. H., 2007, Bird assemblages in secondary forests developing after slash-and-burn agriculture in the Brazilian Amazon. Journal of Tropical Ecology, 23(4), 469–477. doi: DOI: 10.1017/S0266467407004105.

Borneo Post Online, 2014, Highly valued wood for rural community, Date of access 16/07/2020. https://www.theborneopost.com/2014/09/28/highly-valued-wood-for-rural-community/

Brady, N. C., 1996, Alternatives to slash-and-burn: a global imperative. Agriculture, Ecosystems & Environment, 58(1), 3-11.

Braga, A. C. R., and Martensen, A. C., 2017, Smallholders: Drivers or targets of Amazonian Deforestation. Human Geography, 10(1), 67–69.

Canadell, J. G., and Raupach, M. R., 2008, Managing forests for climate change mitigation. Science, 320(5882), 1456-1457.

Caplow, S., Jagger, P., Lawlor, K., and Sills, E., 2011, Evaluating land use and livelihood impacts of early forest carbon projects: Lessons for learning about REDD+. Environmental Science & Policy, 14(2), 152-167.

Carvalho, W. D., Mustin, K., Hilário, R. R., Vasconcelos, I. M., Eilers, V., and Fearnside, P. M., 2019, Deforestation control in the Brazilian Amazon: A conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspectives in Ecology and Conservation, 17(3), 122–130. doi: https://doi.org/10.1016/j.pecon.2019.06.002.

Certini, G., 2005, Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1–10. doi: 10.1007/s00442-004-1788-8.

Christoff, P., 2016, The promissory note: COP 21 and the Paris Climate Agreement. Environmental Politics, 25(5), 765–787. doi: 10.1080/09644016.2016.1191818.

Copernicus Atmosphere Monitoring Service, 2019, Emissions and surface fluxes, Date of access: 20/01/20. https://atmosphere.copernicus.eu/emissions-and-surface-fluxes

Cornell, J., 2011, Slash and burn, The Encyclopedia of Earth, Date of access: 19/01/2020. http://editors.eol.org/eoearth/wiki/Slash_and_burn.

D’Haene, K., Sleutel, S., De Neve, S., Gabriels, D., and Hofman, G., 2009, The effect of reduced tillage agriculture on carbon dynamics in silt loam soils. Nutrient Cycling in Agroecosystems, 84(3), 249-265.

d’Oliveira, M. V. N., Alvarado, E. C., Santos, J. C., and Carvalho Jr, J. A., 2011, Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management, 261(9), 1490-1498.

Davidson, E. A., De Abreu Sá, T. D., Carvalho, C. J. R., De Oliveira Figueiredo, R., Kato, M. S. A., Kato, O. R., and Ishida, R. Y., 2008, An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia. Global Change Biology, 14(5), 998–1007. doi: 10.1111/j.1365-2486.2008.01542.x.

Denich, M., Vielhauer, K., Kato, M. D. A., Block, A., Kato, O. R., de Abreu Sá, T. D., Lucke, W., and Vlek, P. L., 2004, Mechanized land preparation in forest-based fallow systems: The experience from Eastern Amazonia. Agroforestry Systems, 61(1-3), 91-106.

Dixon, R. K., Andrasko, K. J., Sussman, F. G., Lavinson, M. A., Trexler, M. C., and Vinson, T. S., 1993, Forest sector carbon offset projects: near-term opportunities to mitigate greenhouse gas emissions. In Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2, (Dordrecht, Netherlands: Springer), pp. 561-577.

Eastmond, A., and Faust, B., 2006, Farmers, fires, and forests: a green alternative to shifting cultivation for conservation of the Maya forest? Landscape and Urban Planning, 74(3-4), 267-284.

Eckmeier, E., Rösch, M., Ehrmann, O., Schmidt, M. W., Schier, W., and Gerlach, R., 2007, Conversion of biomass to charcoal and the carbon mass balance from a slash-and-burn experiment in a temperate deciduous forest. The Holocene, 17(4), 539-542.

Edem, I. D., Opara-Nadi, O. A., and Ijah, C. J., 2012. Effects of biomass burning on soil properties and air quality under slash-and-burn agriculture. Agriculture, 52, 11555–11564.

Galicia, L., Gómez-Mendoza, L., and Magaña, V., 2015, Climate change impacts and adaptation strategies in temperate forests in Central Mexico: a participatory approach. Mitigation and Adaptation Strategies for Global Change, 20(1), 21-42.

Gay-des-Combes, J. M., Robroek, B. J. M., Hervé, D., Guillaume, T., Pistocchi, C., Mills, R. T. E., and Buttler, A., 2017, Slash-and-burn agriculture and tropical cyclone activity in Madagascar: Implication for soil fertility dynamics and corn performance. Agriculture, Ecosystems & Environment, 239, 207–218. doi: https://doi.org/10.1016/j.agee.2017.01.010.

Gil, J., Siebold, M., and Berger, T., 2015, Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems & Environment, 199, 394-406.

Grogan, P., Lalnunmawia, F., and Tripathi, S. K., 2012, Shifting cultivation in steeply sloped regions: a review of management options and research priorities for Mizoram state, Northeast India. Agroforestry Systems, 84(2), 163–177. doi: 10.1007/s10457-011-9469-1.

Gupta, A., Pistorius, T., and Vijge, M. J., 2016, Managing fragmentation in global environmental governance: the REDD+ Partnership as bridge organization. International Environmental Agreements: Politics, Law and Economics, 16(3), 355-374.

Houghton, R. A., and Nassikas, A. A., 2017, Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles, 31(3), 456-472.

Iwata, T., Nakano, S., and Inoue, M., 2003, Impacts of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecological Applications, 13(2), 461–473. doi: 10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2.

Izac, A. M., 1997, Developing policies for soil carbon management in tropical regions. Geoderma, 79(1-4), 261-276.

Jong, N. H., 2019, Indonesia fires emitted double the carbon of Amazon fires, research shows, Mongabay, 25 November, Date of access: 18/11/2020. https://news.mongabay.com/2019/11/indonesia-fires-amazon-carbon-emissions-peatland/#.

Kato, M. D. S., Kato, O. R., Denich, M., and Vlek, P. L., 1999, Fire-free alternatives to slash-and-burn for shifting cultivation in the eastern Amazon region: the role of fertilizers. Field Crops Research, 62(2-3), 225-237.

Kiyono, Y., and Hastaniah, 2000, The role of slash-and-burn agriculture in transforming dipterocarp forest into Imperata grassland. In Rainforest ecosystems of East Kalimantan, edited by E. Guhardja, M. Fatawi, M. Sutisna, T. Mori, and S. Ohta. Ecological Studies (Analysis and Synthesis) (Tokyo: Springer Japan), pp. 199–208. doi: 10.1007/978-4-431-67911-0_17.

Kiyono, Y., Ochiai, Y., Chiba, Y., Asai, H., Saito, K., Shiraiwa, T., Horie, T., Songoukhai, V., Navongxai, V., and Inoue, Y., 2007, Predicting chronosequential changes in carbon stocks of pachymorph bamboo communities in slash-and-burn agricultural fallow, northern Lao People's Democratic Republic. Journal of Forest Research, 12(5), 371-383.

Kotto-Same, J., Woomer, P. L., Appolinaire, M., and Louis, Z., 1997, Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agriculture, Ecosystems & Environment, 65(3), 245-256.

Kotto-Same, J., Woomer, P. L., Appolinaire, M., and Louis, Z., 1997, Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agriculture, Ecosystems & Environment, 65(3), 245–256. doi: https://doi.org/10.1016/S0167-8809(97)00060-1.

Kukla, J., Whitfeld, T., Cajthaml, T., Baldrian, P., Veselá‐Šimáčková, H., Novotný, V., and Frouz, J., 2019, The effect of traditional slash-and-burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation & Development, 30(2), 166–177. doi: 10.1002/ldr.3203.

Lasco, R. D., Delfino, R. J. P., and Espaldon, M. L. O., 2014, Agroforestry systems: helping smallholders adapt to climate risks while mitigating climate change. Wiley Interdisciplinary Reviews: Climate Change, 5(6), 825-833.

Lehsten, V., Tansey, K., Balzter, H., Thonicke, K., Spessa, A., Weber, U., Smith, B., and Arneth, A., 2009, Estimating carbon emissions from African wildfires, Biogeosciences, 6(3), 349–360. doi: 10.5194/bg-6-349-2009.

Lehtonen, H., and Huttunen, P., 1997, History of forest fires in eastern Finland from the fifteenth century AD-the possible effects of slash-and-burn cultivation. The Holocene, 7(2), 223-228.

Liang, J. L., Zhou, W. H., Gao, S. M., Yu, W. P., Shu, W. S., and Li, J. T., 2018, A simple slash-and-char system to mitigate climate change and environmental pollution. Environmental Pollution, 242, 1904-1911.

Lopes, M., 2019, As the Amazon burns, breathing problems spike, The Washington Post, 28 August, Date of access: 20/01/20. https://www.washingtonpost.com/world/the_americas/as-amazon-burns-breathing-problems-spike/2019/08/28/497ed9ec-c908-11e9-9615-8f1a32962e04_story.html.

Mamede, M. de A., and de Araújo, F. S., 2008, Effects of slash and burn practices on a soil seed bank of caatinga vegetation in Northeastern Brazil. Journal of Arid Environments, 72(4), 458–470. doi: https://doi.org/10.1016/j.jaridenv.2007.07.014.

Martorano, L. G., Siviero, M. A., Tourne, D. C. M., Vieira, S. B., Fitzjarrald, D. R., Vettorazzi, C. A., Junior, S.B., Yered, J.A.G., Meyering, E., and Lisboa, L. S. S., 2016, Agriculture and forest: A sustainable strategy in the Brazilian Amazon. Embrapa Amazônia Oriental-Artigo em periódico indexado (ALICE).

Mburu, J., Börner, J., Hedden-Dunkhorst, B., Mendoza-Escalante, A., and Frohberg, K., 2007, Feasibility of mulching technology as an alternative to slash-and-burn farming in eastern Amazon: A cost–benefit analysis. Renewable Agriculture and Food Systems, 22(2), 125-133.

McLauchlan, K. K., 2006, Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma, 136(1-2), 289-299.

Medrilzam, M., Dargusch, P., Herbohn, J., and Smith, C., 2013, The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. Forestry: An International Journal of Forest Research, 87(2), 335–345. doi: 10.1093/forestry/cpt033.

Moura, E.G., Sena V. G.L., Correa, M. S., and Aguiar, A. d.CF., 2013, The importance of an alternative for sustainability of agriculture around the periphery of the amazon rainforest. Recent Patents on Food, Nutrition & Agriculture, 5(1), 70-78.

Myers, N., 1991, Tropical forests: present status and future outlook. Climatic Change, 19(1-2), 3-32.

Normile, D., 2019, Parched peatlands fuel Indonesia's blazes. Science, 366(6461), 2019.

Ohtsuka, T., Mo, W., Uchida, M., Sako, H., and Koizumi, H., 2007, Slash-and-Burn Agriculture in a Japanese Cedar (Cryptomeria japonica D. Don.) Plantation: Effects of Fire on Nutrients and Soil Emissions of Carbon Dioxide. Elsevier Oceanography Series, 73, 395-416.

Palm, C., Tomich, T., Van Noordwijk, M., Vosti, S., Gockowski, J., Alegre, J., and Verchot, L., 2004, Mitigating GHG emissions in the humid tropics: Case studies from the alternatives to slash-and-burn program (ASB). In: Tropical Agriculture in Transition — Opportunities for Mitigating Greenhouse Gas Emissions? edited by R. Wassmann, and P. L. G. Vlek. (Dordrecht, Netherlands: Springer), 145–162. doi: 10.1007/978-94-017-3604-6_8.

Panosso, A. R., Marques Jr, J., Pereira, G. T., and La Scala Jr, N., 2009, Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-and-burn managements. Soil and Tillage Research, 105(2), 275-282.

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A. and Cassman, K. G., 2014, Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683.

Randriamalala, J. R., Hervé, D., Letourmy, P., and Carrière, S. M., 2015, Effects of slash-and-burn practices on soil seed banks in secondary forest successions in Madagascar. Agriculture, Ecosystems & Environment, 199, 312–319. doi: https://doi.org/10.1016/j.agee.2014.09.010.

Reichert, J. M., Bervald, C. M. P., Rodrigues, M. F., Kato, O. R., and Reinert, D. J., 2014, Mechanized land preparation in eastern Amazon in fire-free forest-based fallow systems as alternatives to slash-and-burn practices: hydraulic and mechanical soil properties. Agriculture, Ecosystems & Environment, 192, 47-60.

Reinhardt, T. E., Ottmar, R. D., and Castilla, C., 2001, Smoke impacts from agricultural burning in a rural Brazilian Town. Journal of the Air & Waste Management Association, 51(3), 443–450. doi: 10.1080/10473289.2001.10464280.

Rossi, J. P., Celini, L., Mora, P., Mathieu, J., Lapied, E., Nahmani, J., Ponge, J. F., and Lavelle, P., 2010, Decreasing fallow duration in tropical slash-and-burn agriculture alters soil macroinvertebrate diversity: A case study in southern French Guiana. Agriculture, Ecosystems & Environment, 135(1), 148–154. doi: https://doi.org/10.1016/j.agee.2009.08.012.

Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D. P., Valentin, C., and Mariotti, A., 2006, Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, 130(1-2), 35-46.

Salisbury, D. S., and Schmink, M., 2007, Cows versus rubber: Changing livelihoods among Amazonian extractivists. Geoforum, 38(6), 1233–1249. doi: https://doi.org/10.1016/j.geoforum.2007.03.005.

Silva, J. M. N., Carreiras, J. M. B., Rosa, I., and Pereira, J. M. C., 2011, Greenhouse gas emissions from shifting cultivation in the tropics, including uncertainty and sensitivity analysis. Journal of Geophysical Research: Atmospheres, 116(D20). doi: 10.1029/2011JD016056.

Smith, J., Van De Kop, P., Reategui, K., Lombardi, I., Sabogal, C., and Diaz, A., 1999, Dynamics of secondary forests in slash-and-burn farming: interactions among land use types in the Peruvian Amazon. Agriculture, Ecosystems & Environment, 76(2-3), 85-98.

Socolar, J. B., Valderrama Sandoval, E. H., and Wilcove, D. S., 2019, Overlooked biodiversity loss in tropical smallholder agriculture. Conservation Biology, 33(6), 1338–1349. doi: 10.1111/cobi.13344.

Strassburg, B. B., Latawiec, A. E., Barioni, L. G., Nobre, C. A., Da Silva, V. P., Valentim, J. F., Vianna, M., and Assad, E. D., 2014, When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Global Environmental Change, 28, 84-97.

Styger, E., Rakotondramasy, H. M., Pfeffer, M. J., Fernandes, E. C., and Bates, D. M., 2007, Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agriculture, Ecosystems & Environment, 119(3), 257–269. doi: https://doi.org/10.1016/j.agee.2006.07.012.

Tacconi, L., and Vayda, A. P., 2006, Slash and burn and fires in Indonesia: A comment. Ecological Economics, 56(1), 1–4. doi: https://doi.org/10.1016/j.ecolecon.2005.03.034.

Tan-Soo, J.-S., and Pattanayak, S. K., 2019, Seeking natural capital projects: Forest fires, haze, and early-life exposure in Indonesia. Proceedings of the National Academy of Sciences, 116(12), 5239 – 5245. doi: 10.1073/pnas.1802876116.

Thomaz, E. L., 2013, Slash-and-burn agriculture: Establishing scenarios of runoff and soil loss for a five-year cycle. Agriculture, Ecosystems & Environment, 168, 1–6. doi: https://doi.org/10.1016/j.agee.2013.01.008.

Thomaz, E. L., 2017, High fire temperature changes soil aggregate stability in slash-and-burn agricultural systems. Scientia Agricola, 74, 157–162.

Thomaz, E. L., Antoneli, V., and Doerr, S. H., 2014, Effects of fire on the physicochemical properties of soil in a slash-and-burn agriculture. CATENA, 122, 209–215. doi: https://doi.org/10.1016/j.catena.2014.06.016.

Thong, P., Pebam, R., and Sahoo, U. K., 2016, Recovery pattern of vegetation during succession following slash and burn agriculture in Mizoram, North-East India. Journal of Biology & Soil Health, 3(2), 8.

Tinker, P. B., Ingram, J. S. I., and Struwe, S., 1996, Effects of slash-and-burn agriculture and deforestation on climate change. Agriculture, Ecosystems & Environment, 58(1), 13–22. doi: https://doi.org/10.1016/0167-8809(95)00651-6.

Tinker, P. B., Ingram, J. S., and Struwe, S., 1996, Effects of slash-and-burn agriculture and deforestation on climate change. Agriculture, Ecosystems & Environment, 58(1), 13-22.

Tomich, T. P., van Noordwijk, M., Vosti, S. A., and Witcover, J., 1998, Agricultural development with rainforest conservation: methods for seeking best bet alternatives to slash-and-burn, with applications to Brazil and Indonesia. Agricultural Economics, 19(1-2), 159-174.

Tremblay, S., Lucotte, M., Revéret, J. P., Davidson, R., Mertens, F., Passos, C. J. S., and Romana, C. A., 2015, Agroforestry systems as a profitable alternative to slash and burn practices in small-scale agriculture of the Brazilian Amazon. Agroforestry Systems, 89(2), 193-204.

Trexler, M. C., 1993, Manipulating biotic carbon sources and sinks for climate change mitigation: can science keep up with practice?. Water, Air, and Soil Pollution, 70(1-4), 579-593.

Tschakert, P., Coomes, O. T., and Potvin, C., 2007, Indigenous livelihoods, slash-and-burn agriculture, and carbon stocks in Eastern Panama. Ecological Economics, 60(4), 807–820. doi: https://doi.org/10.1016/j.ecolecon.2006.02.001.

Unruh, J. D., Houghton, R. A., and Lefebvre, P. A., 1993, Carbon storage in agroforestry: an estimate for sub-Saharan Africa. Climate Research, 3(1-2), 39-52.

van Vliet, N., Mertz, O., Heinimann, A., Langanke, T., Pascual, U., Schmook, B., Adams, C., Schmidt-Vogt, D., Messerli, P., Leisz, S., and Castella, J. C., 2012, Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Global Environmental Change, 22(2), 418–429. doi: https://doi.org/10.1016/j.gloenvcha.2011.10.009.

Vashum, K. T., and Jayakumar, S., 2016, Soil organic carbon status and sustainability of slash-and-burn cultivation in India. Journal of Sustainable Forestry, 35(8), 591-603.

Verchot, L. V., Van Noordwijk, M., Kandji, S., Tomich, T., Ong, C., Albrecht, A., Mackensen, J., Bantilan, C., Anupama, K.V. and Palm, C., 2007, Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change, 12(5), 901-918.

Vosti, S. A., and Witcover, J., 1996, Slash-and-burn agriculture — household perspectives. Agriculture, Ecosystems & Environment, 58(1), 23–38. doi: https://doi.org/10.1016/0167-8809(95)00652-4.

Watson, R. T., Noble, I. R., Bolin, B. Ravindranath, N. H., Verardo, D. J., and Doken, D.J. (eds.), 2000, Land use, land-use change and forestry. Intergovermental Panel on Climate Change (Cambridge, UK:, Cambridge University Press).

Woomer, P. L., and Palm, C. A., 1998, An approach to estimating system carbon stocks in tropical forests and associated land uses. The Commonwealth Forestry Review, 181-190.

Ziegler, A. D., Bruun, T. B., Guardiola-Claramonte, M., Giambelluca, T. W., Lawrence, D., and Lam, N. T., 2009, Environmental consequences of the demise in swidden cultivation in montane mainland Southeast Asia: Hydrology and geomorphology, Human Ecology, 37(3), 361–373. doi: 10.1007/s10745-009-9258-x.

Ziegler, A. D., Phelps, J., Yuen, J. Q., Webb, E. L., Lawrence, D., Fox, J. M., Bruun, T.B., Leisz, S.J., Ryan, C.M., Dressler, W., Mertz, O., Pascual, U., Padoch, C., and Koh, L.P., 2012, Carbon outcomes of major land‐cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Global Change Biology, 18(10), 3087-3099.




How to Cite

Tang, K. H. D., & Yap, P.-S. (2020). A Systematic Review of Slash-and-Burn Agriculture as an Obstacle to Future-Proofing Climate Change. The Proceedings of The International Conference on Climate Change, 4(1), 1–19. https://doi.org/10.17501/2513258X.2020.4101