CHARACTERIZATION OF IPOMOEA BATATAS 'CILEMBU' NON TYPICAL AGRICULTURAL LAND USING THE ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) AND MICROTREMOR APPROACH
DOI:
https://doi.org/10.17501/26827018.2023.8106Keywords:
Cicalengka, ERT, Microtremor, Agriculture Geophysics, Sweet Cilembu PotatoAbstract
Soil characterization investigations for the distribution of fertile soils have been carried out on non-typical agricultural lands with the aim that farmers can assess soil fertility problems which can increase crop productivity. This characterization was carried out using a high-precision agricultural approach with currently developing geophysical technology. The geoelectrical method is one of the geophysical methods that can be used to map spatial and temporal variations of soil physical properties. while Microtremor measurements can also be used in soil structure surveys to determine subsurface conditions. From these two methods, data were processed using geopsy software and RES2DINV which produced parameters of dominant frequency (f0), amplification (A), and resistivity (ρ). The processing results obtained resistivity values from 100 to 600 Ωm, dominant frequency values from 3.697 to 4.545 Hz and amplification values from 3.1 to 5.4. The study area shows resistivity values ranging from 100 to 600 Ωm, this indicates an alluvial soil type area that is rich in minerals and suitable for cultivating organic Cilembu sweet potato. This agricultural area also has a frequency value below 4 which indicates that the area has thick sediment, this is due to the decreasing topography of the land from east to west so that there are differences in elevation on agricultural land. This agricultural area also has an amplification value above 4 which indicates that in this area the soil is heterogeneous, dense enough to allow the soil to absorb water better so that in that area the soil is more fertile than soil with low amplification (< 4).
Downloads
References
Aizebeokhai, A. P. (2014). Assessment of soil salinity using electrical resistivity imaging and induced polarization methods. African Journal of Agricultural Research, 9(45), 3369-3378.
Arai, H., & Tokimatsu, K. (2004). S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 94(1), 53-63.
Arifin, M. Z., Anwar, K., & Simatupang, R. S. (2006). Karakteristik dan potensi lahan rawa lebak untuk pengembangan pertanian di Kalimantan Selatan. Dalam, 85-102.
Barry, M. A dan Susylowati (2004). Pengaruh Pemupukan N, P, K dan Kepadatan Tanaman Jagung Semi Dalam Sistem Tumpangsari Terhadap Pertumbuhan dan Hasil Jagung Semi (Zea mays L.) dan Kacang Panjang (Vigna sinensis L.). Jurnal Budidaya Pertanian. 10(2): 129-138.
Dafalla, M. A., & AlFouzan, F. A. (2012). Influence of physical parameters and soil chemical composition on electrical resistivity: a guide for geotechnical soil profiles. Int J Electrochem Sci, 7, 3191-3204.
Edwards, L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020-1036.
Fukue, M., Minato, T., Horibe, H., & Taya, N. (1999). The micro-structures of clay given by resistivity measurements. Engineering geology, 54(1-2), 43-53.
Ganiyu, S. A., Olurin, O. T., Oladunjoye, M. A., & Badmus, B. S. (2020). Investigation of soil moisture content over a cultivated farmland in Abeokuta Nigeria using electrical resistivity methods and soil analysis. Journal of King Saud University-Science, 32(1), 811-821.
Hanafiah, K. A. (2007). Dasar-Dasar Ilmu Tanah Jakarta: PT. Raja Grafindo Persada.
Hardjowigeno, S. (2003). Ilmu Tanah. Jakarta, Indonesia: Akademika Pressindo.
Herak, M. (2008). Model HVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences, 34(11), 1514-1526.
Kearey, P., Brooks, M., Hill, I., 2002. An introduction to geophysical exploration. Blackwell Science.
Kumar, P., Tiwari, P., Singh, A., Biswas, A., & Acharya, T. (2021). Electrical Resistivity and Induced Polarization signatures to delineate the near-surface aquifers contaminated with seawater invasion in Digha, West-Bengal, India. Catena, 207, 105596.
Lowrie, W., & Fichtner, A. (2020). Fundamentals of geophysics. New York, United Kingdom: Cambridge University Press.
Loke, M. H. (1999). A Practical Guide to 2D and 3D Surveys. Electrical Imaging Surveys for Environmental and Engineering Studies, 8-10.
Lumenta, E., & Setiawan, T. (2019). Metode Pemetaan Resistivitas Tanah pada Survei Pertanian dengan HUMA EC 1. Jurnal Geofisika, 15(2), 21-25.
McCarter, W. J. (1984). The electrical resistivity characteristics of compacted clays. Geotechnique, 34(2), 263-267.
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5).
Mursito, D. dan Kawiji (2002). Pengaruh Kerapatan Tanam dan Kedalaman Olah Tanah Terhadap Hasil Umbi Lobak (Raphanus sativus L.). Agrosains. 4(1): 1-6
Mustofa, A. (2007). Perubahan Sifat Fisik, Kimia, dan Biologi tanah pada Hutan Alam yang diubah Menjadi Lahan Pertanian di Kawasan Taman Nasional Gunung Leuser. Jurusan Silvikultur. Fakultas Kehutanan. IPB. Bogor. Skripsi.
Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. Chichester, United Kingdom: John Wiley & Sons.
Ritung, S., Suryani, E., Subardja, D., Nugroho, K., Mulyani, A., Tafakresnanto, C., ... & Supriatna, W.
(2015). Sumber daya lahan pertanian Indonesia: luas, penyebaran, dan potensi ketersediaan. IAARD Press.
Rosmarkam, A., & Yuwono, N. W. (2002). Ilmu Kesuburan Tanah Yogyakarta (ID): Kanisius.
Silitonga, P.H. (2003). Geologi Lembar Bandung, Skala 1:100.000, Pusat Penelitian dan Pengembangan Geologi. Departemen Pertambangan dan Energi.
Solihin, M. A., Sitorus, S. R. P., Sutandi, A., & Widiatmaka, W. (2016). Karakteristik Lahan dan Kualitas Kemanisan Ubi Jalar Cilembu. Journal of Natural Resources and Environmental Management , 7(3), 251-259.
Solihin, M.A. 2017. Model Penentuan Kriteria Kesesuaian Lahan Ubi Jalar Cilembu Varietas Rancing Berbasis Karakteristik Spesifik Lokasi. Disertasi. Institut Pertanian Bogor.
Bogor
Sudha, K., Israil, M., Mittal, S., & Rai, J. (2009). Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics, 67(1), 74-79.
Supadma, A.A., I.N. Dibia. (2006). Evaluasi Status Kesuburan Tanah Sawah di Kelurahan Penatih Kota Denpasar Untuk Perencanaan Pemupukan Berimbang. Jurnal Agritrop 25(4):116-124.
Supriyadi, S. (2008). Kandungan Bahan Organik Sebagai Dasar Pengelolaan Tanah di Lahan Kering Madura. Jurnal Embryo 5(.2):180
Susanto, E., Herlina, N., & Suminarti, N. E. (2014). Respon pertumbuhan dan hasil tanaman ubi jalar (Ipomoea batatas L.) pada beberapa macam dan waktu aplikasi bahan organik. Jurnal produksi tanaman, 2(5), 412-418.
Wandana, S., Hanum, C., & Sipayung, R. (2012). Pertumbuhan dan hasil ubi jalar dengan pemberian pupuk kalium dan triakontanol. Jurnal Online Agroekoteknologi, 1(1) : 199-211.
Widijanto, H., Syamsiyah, J., & Ferela, B. D. I. (2008). Efisiensi serapan p tanaman kentang pada tanah andisol dengan penambahan vermikompos. Sains Tanah-Journal of Soil Science and Agroclimatology, 5(2), 67-74.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Proceedings of the International Conference on Agriculture
This work is licensed under a Creative Commons Attribution 4.0 International License.