

COST-EFFECTIVENESS ANALYSIS OF ADJUVANT OSIMERTINIB IN RESECTED EGFR-MUTATED EARLY-STAGE NON-SMALL CELL LUNG CANCER IN THAILAND

Changsatja S^{1*} , Kositamongkol C^2 , Thamlikitkul L^2 , Phisalprapa P^2 and Komonpaisarn T^1

¹Center of Excellence for Health Economics, Faculty of Economic, Chulalongkorn University, Bangkok, Thailand.

²Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Abstract: Lung cancer is the most common cancer and the leading cause of cancer death worldwide. One-third of non-small cell lung cancer (NSCLC) patients are diagnosed in resectable stage, for which curative surgery is the cornerstone of treatment. Adjuvant osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), was shown to significantly reduce recurrence and prolong survival for completely resected EGFR-mutated NSCLC. We performed a cost-effectiveness analysis of adjuvant osimertinib compared to placebo in patients with resected stage IB to IIIA EGFRmutated NSCLC using Thailand's societal perspective. A Markov model estimated the lifetime costs and health benefits of osimertinib versus placebo, including three health states: disease-free, recurrent disease, and death, tracked over a lifetime using 4-week cycles. Results were reported as 2023 USD incremental cost-effectiveness ratios (ICERs) per quality-adjusted life year (QALY) gained. The result showed that a virtual patient receiving osimertinib had 2.36 more QALYs than one receiving the placebo, at an incremental cost of 62,604.90 USD. Compared to the placebo group, treatment with adjuvant osimertinib had an ICER of 26,474.02 USD/QALY gained. Therefore, osimertinib was not cost-effective at the Thai willingness-to-pay (WTP) threshold of 4,619 USD/QALY gained. The drug price would need to be reduced by at least 85.07% for osimertinib to be cost-effective. In summary, adjuvant osimertinib for resected EGFR-mutated NSCLC patients is not costeffective according to Thailand's current WTP threshold. Negotiating drug costs and managed entry agreements could improve patient access to this effective treatment.

Keywords: non-small cell lung cancer, osimertinib, cost-effectiveness, epidermal growth factor receptor, adjuvant therapy

Introduction

Cancer constitutes a significant cause of mortality in Thailand, with lung cancer emerging as a prevalent concern due to its escalating incidence and prevalence over the years. The rise in lung cancer cases, as reported in lung cancer in Thailand study (Reungwetwattana et al., 2020), underscores the pressing nature of this health issue. Concurrently, the 5-year prevalence of lung cancer escalated, with an estimated 31,088 individuals living with the condition in 2022 (World Health Organization, 2022).

Consequently, the increasing incidence and prevalence of lung cancer in Thailand signify a growing health challenge within the nation.

One-third of non-small cell lung cancer (NSCLC) patients are diagnosed in resectable stage, for which curative surgery is the cornerstone of treatment. However, post-surgical recurrence rates and mortality remain considerable, highlighting the need for more effective interventions. Notably, East and Southeast Asian populations found the prevalence of the epidermal growth factor receptor (EGFR) gene mutation, which paved the way for targeted treatment such as EGFR tyrosine kinase inhibitors (TKIs) (Sukauichai et al., 2022). Osimertinib is a third-generation irreversible EGFR TKI that has demonstrated efficacy in early-stage NSCLC, as evidenced by the ADAURA trials.

The ADAURA trial, phase III RCT, investigated osimertinib adjuvant therapy compared to placebo in patients who have EGFR-mutated resected in stage IB to IIIA NSCLC. Results showed a substantial prolongation of disease-free survival with osimertinib. Moreover, a 5-year overall survival study revealed a significant survival benefit with osimertinib. This was indicated by a hazard ratio for death of 0.49 (95.03% CI, 0.34 to 0.70), highlighting its positive impact on long-term survival outcomes in individuals with EGFR-mutated resected early-stage NSCLC (Herbst et al., 2023; Tsuboi et al., 2023; Wu et al., 2020).

The outcome of the cost-effectiveness analysis of adjuvant osimertinib for patients with completely resected NSCLC and EGFR mutations varies across countries, demonstrating instances of both cost-effectiveness and non-cost-effectiveness when compared to a placebo (Lemmon et al., 2022; Verhoek et al., 2023; Vila Pérez et al., 2023; Zhou et al., 2022). Assessing the cost-effectiveness of adjuvant osimertinib versus placebo for treating EGFR mutations in NSCLC with a complete resection holds significance for health economic decision-making. Insights from this study can inform health economics committees, potentially influencing the addition of osimertinib to the National List of Essential Medicines (NLEM) in Thailand, thus improving access for early-stage NSCLC patients. Despite its high costs, Osimertinib's demonstrated efficacy in preventing disease recurrence and improving overall survival in EGFR-mutated completely resected non-squamous NSCLC (Stage IB to IIIA) underscores its relevance for inclusion in the NLEM. Additionally, the findings of the cost-effectiveness analysis can aid in strategic healthcare budget allocation, particularly given the rising incidence and prevalence of lung cancer in Thailand. While several nations have examined the cost-effectiveness of osimertinib in early-stage NSCLC, Thailand lacks similar research on its utility for completely resected NSCLC with EGFR mutations, making this investigation crucial.

Therefore, the objective of this study is to conduct a cost-effectiveness analysis of adjuvant osimertinib compared to a placebo in patients with resected stage IB to IIIA EGFR-mutated NSCLC, from Thailand's societal perspective. Additionally, this study differs from those conducted in other countries, as the Markov model was developed in collaboration with lung oncology specialists from a Thai university hospital, ensuring alignment with clinical practice for the treatment of NSCLC in the Thai population. The model also incorporates the timeline of disease recurrence, considering both local/regional recurrence and distant recurrence, wherein patients receive distinct treatments during the progression phase. Furthermore, this study addresses a critical gap by providing significant insights into the economic evaluation of osimertinib, specifically for the Thai population undergoing treatment for

completely resected NSCLC with EGFR mutations, from the perspective of Thai society. These findings can also serve as valuable information for health policymakers.

Materials and Methods

General Overview

The study employed a cost-effectiveness analysis (CEA) to determine the costs and health outcomes of osimertinib in comparison to a placebo by using model-based economic evaluation for patients who complete tumor resection, confirmed EGFR mutation, and WHO performance status of 0 or 1 with primary nonsquamous non-small cell lung cancer with stage IB, II, or IIIA. The determination was the patient aged 18 years or older, and those who had already had adjuvant chemotherapy or were unable to receive platinum-based chemotherapy followed the population in the ADUARA trial. The model treatment pathway encompasses two arms: the osimertinib arm and the placebo arm, depicted in Figure 1. In the disease-free survival (DFS) stage, patients were administered either osimertinib 80 mg per day (maximum 3 years) or placebo. In the event of recurrent disease (RD), patients could experience either a local-regional or distant recurrence. Noteably, patients in the osimertinib arm. However, those who experienced recurrence after 3 years received subsequent treatment identical to that in the placebo arm.

This treatment pathway adheres to clinical practice guidelines for lung cancer treatment in Thailand (The National Cancer Institute Library, 2015), as well as the National Comprehensive Cancer Network guideline (National Comprehensive Cancer Network, 2024), European Society for Medical Oncology guideline (Hendriks et al., 2023), and expert opinions.

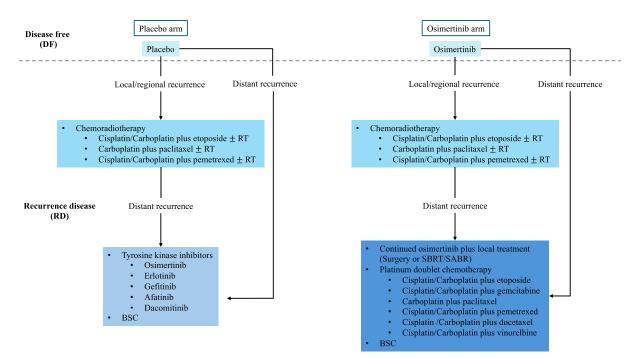


Figure 1: Treatment pathway

Model Structure

The study employed a comprehensive economic evaluation employing Markov models, which were developed from the perspective of Thai society in accordance with the Thai health technology assessment guidelines (Guideline Development Working Group, 2019). These models were tailored to project outcomes and costs related to the treatment of resected early-stage NSCLC in patients with EGFR mutations. The constructed model underwent validation by lung oncologists and health economists.

The Markov model comprised three distinct health states: disease-free survival (DFS), recurrence disease (RD), and death, as illustrated in Figure 2. Initially, patients were in the DFS state and then moved to other health states, such as RD or death, or remained in the same state for the subsequent cycle. The modeling process continued until the entire population reached the state of death, which served as an absorbing health state. Patient trajectories were tracked over their lifetime horizon using a 4-week cycle. The model assumes that once patients progress to the RD state, they cannot revert to being disease-free.

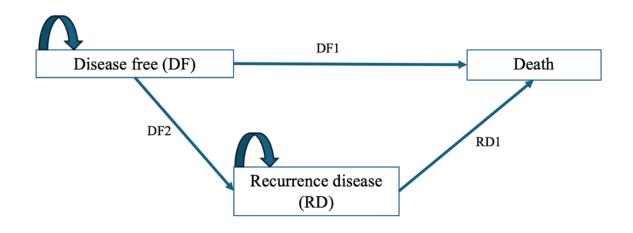


Figure 2: Markov model of stage IB-IIIA NSCLC

Input Parameters

The model input parameters consist of a range of variables, including the transition probability shifts between health states, costs, and utility data. These parameters are analyzed to derive metrics for the outcome of quality-adjusted life years (QALYs) and costs. Furthermore, the results were exposed to a 3% discount rate. The specific information regarding the model input parameter can be found in Appendix Table 1S.

Transition probability data

The transitions from the DF health state were informed by data from the updated ADAURA trial. However, as the ADAURA trial lacked data on transitions out of the RD state, supplemental information was sourced from other trials. Therefore, the transition out of the RD state is derived from the trials that involved the drug receiving subsequent treatment, such as the FLAURA trial (Ramalingam et al., 2019), the LAURA trial (Ramalingam et al., 2024), the PACIFIC trial (Spigel et al., 2022), a study by (Mok et al., 2009), and a study by (Shepherd et al., 2000). Additionally, the transition probability was also calculated with the proportion of the alternative of using subsequent treatment in NSCLC Thai patients, which collected data from interview specialists in lung oncology from three hospital universities in Thailand.

Furthermore, the disease-specific mortality rate (μ_D) for NSCLC was calculated from the deaths of NSCLC and other causes. The mortality rates for NSCLC were derived from existing literature, and the age-specific mortality rates for the general population in Thailand were sourced from statistics provided by the Ministry of Public Health in Thailand. (Ministry of Public Health, 2022) The equation for calculation was shown as follows:

$\mu_D = \mu_C - \mu_{ASMR}$

In this equation, μ _D represents the disease-specific mortality rate for NSCLC, μ _C refers to overall mortality rate of NSCLC obtained from literatures, and μ _ASMR refers the age-, sex-, and race-specific mortality rate from the Ministry of public health in Thailand (Ministry of Public Health, 2022). The methodology for calculated the disease-specific mortality rate derived from (Thaweethamcharoen et al., 2014).

Cost data

In our analysis of Thai society, we examined direct medical costs, direct non-medical costs, and indirect costs. The Thai Consumer Price Index (CPI) was utilized to adjust for inflation, with subsequent conversion to USD based on the 2023 exchange rate of 34.6394 THB per USD (BANK OF THAILAND, 2023). All costs were derived from various sources and were discounted annually at a rate of 3%, in accordance with the guidelines specified in the Thailand Health Technology Assessment Guideline (Guideline Development Working Group, 2019).

The drug acquisition costs for osimertinib were obtained from primary data from Siriraj Hospital. Subsequent treatment costs pertain to the expenditures incurred subsequent to patients experiencing disease recurrence in either the local/regional recurrence or distant recurrence health states. The costs for subsequent treatment drugs were obtained from the website of the Drug and Medical Supply Information Center in Thailand (Drug And Medical Supply Information Center, 2023). The determination of subsequent treatment proportions was guided by specialist lung oncologists.

The cost of thoracotomy with resection of thoracic tumors was obtained from the standard cost list for health technology assessment (Riewpaiboon, 2009). The costs related to visits with specialized physicians, nursing services, drug dispensation, radiotherapy, and mixed chemotherapy were calculated based on the median frequency of patient follow-up visits, as recommended by four specialist lung oncologists. These costs were also derived from the standard cost list for health technology assessment (Riewpaiboon, 2009).

Laboratory test costs, including the EGFR mutation test administered once to confirm EGFR mutation status prior to osimertinib or placebo administration, were obtained from the Siriraj Hospital website. The costs for additional tests such as computerized tomography (CT) of the lung, X-rays, creatinine

tests, EKG, liver function tests, blood urea nitrogen, electrolytes, and a complete blood count were derived from the standard cost list for health technology assessment (Riewpaiboon, 2009) and calculated based on the median follow-up frequency recommended by four specialist lung oncologists.

The cost of adverse events (AEs) was determined through an analysis of the percentage of AEs associated with osimertinib or placebo, as reported in the ADAURA trial (Herbst et al., 2023). This analysis specifically focused on the most prevalent AEs documented in clinical trials, occurring in \geq 10% of patients within the osimertinib or placebo treatment cohorts. Furthermore, the study accounted for the expenses linked to treating severe adverse events, such as pneumonia. The costs related to treating Adverse Events (AEs) were calculated by multiplying the percentage of each occurrence by its corresponding cost per unit, as specified in Table 1. The cost estimations for AEs were obtained through a comprehensive review of the literature (Permsuwan et al., 2014; Riewpaiboon et al., 2020).

Direct non-medical costs encompass costs related to patient and caregiver transportation to the hospital, as well as the costs associated with food for both the patient and caregiver. These costs were sourced from the standard cost list of HITAP for health technology assessment (Riewpaiboon, 2009).

Indirect costs include the duration of time spent by caregivers accompanying patients to hospital appointments for follow-up visits or during treatments such as osimertinib or placebo. These costs were obtained from the standard cost list for health technology assessment (Riewpaiboon, 2009). To determine the cost of caregiver time, the total number of caregiver days lost was multiplied by the average earnings per day, following recommendations from the Thai health technology assessment guidelines (Guideline Development Working Group, 2019).

Adverse events	Osimertinib	Placebo
Diarrhea	40%	14%
Paronychia	25%	1%
Dry skin	22%	5%
Pruritus	18%	7%
Rash/Stomatitis	16%	2%
Dermatitis acneiform	11%	3%
Pneumonia	1%	1%

Table1: The proportion of adverse events

Utility data

We adopted utility data for the DF state from the average of four studies on the CEA of osimertinib in early-stage resected NSCLC with EGFR-positive patients in other countries (Lemmon et al., 2022; Verhoek et al., 2023; Vila Pérez et al., 2023; Zhou et al., 2022). This method was necessary as there was a limitation of utility data for Thai individuals receiving osimertinib treatment for this specific disease.

We did not acquire Health-Related Quality of Life (HRQoL) data from the ADAURA trial since the trial assessed HRQoL using the Short Form-36 (SF-36) health survey. In accordance with the Health Technology Assessment (HTA) guidelines in Thailand, the recommended instrument for the Thai population is the European Quality-of-Life, 5-Dimension (EQ-5D) questionnaire.

The utility values for patients who received chemoradiotherapy for local/regional recurrent disease were derived from a study conducted by (Grutters et al., 2010). The utility values associated with the distant recurrence disease state were derived from the study conducted by (Limwattananon et al., 2018). This research gathered utility values specific to the Thai population utilizing the EQ-5D questionnaire. The purpose was to evaluate the CEA of TKIs as first-line treatments for patients diagnosed with advanced NSCLC in Thailand.

Additionally, the utility value for best supportive care in patients with distant recurrent disease was obtained from the study by (Kangwanrattanakul, 2022), which gathered utility data on best supportive care for Thai patients with stage IIIA, IIIB, and IV NSCLC.

Cost-effectiveness analysis

Base Case Analysis

In the base case analysis, we conducted a comparison of the total lifetime costs, life years, and QALYs among patients with EGFR-mutated early-stage NSCLC who received adjuvant treatment with osimertinib versus placebo. Subsequently, the incremental cost-effectiveness ratio (ICER) was calculated accordingly. To evaluate the cost-effectiveness of the intervention, we applied the local ICER threshold in Thailand, set at \$4,619 per QALY gained (160,000 THB per QALY gained).(Guideline Development Working Group, 2019)

Results and Discussion

Base case analysis

From the base case analysis, it was determined that osimertinib therapy provided a total of 8.22 QALYs and a life expectancy of 10.33 years. In comparison, the placebo group accrued 5.86 QALYs and a life expectancy of 7.52 years. Thus, patients receiving osimertinib experienced an additional 2.36 QALYs and 2.81 years of life expectancy compared to those receiving placebo. The lifetime cost of osimertinib treatment per patient amounted to \$71,801.64 (2,487,165.81 THB), whereas the placebo treatment incurred a total cost of \$9,196.74 (318,569.69 THB). Consequently, the incremental cost associated with osimertinib therapy was \$62,604.90 (2,168,596.12 THB). This results in an ICER of \$26,474.02 per QALY gained when compared to the placebo. However, given the willingness-to-pay (WTP) threshold in Thailand of \$4,619 per QALY gained (160,000 THB per QALY gained), osimertinib did not meet the criteria for cost-effectiveness. To achieve cost-effectiveness within this threshold, the price of osimertinib would need to be reduced by at least 85.07%. Table 2 provides particular data.

Table 2: Lifetime cost and health outcomes of resected stage IB to IIIA EGFR-mutated NSCLC.

Treatment	Total cost	LYs	QALYs	Incremental	Incremental	ICERs (USD/QALY
option	(USD)			cost (USD)	QALYs	gained)
Placebo	9,196.74	7.52	5.86	-	-	-
Osimertinib	71,801.64	10.33	8.22	62,604.90	2.36	26,474.02

USD, US dollars; LYs, Life years; QALYs, quality-adjusted life years; ICERs, incremental costeffectiveness ratios

Based on the ICER results, osimertinib is not cost-effective for Thai patients with early-stage EGFRmutated NSCLC. Therefore, to improve cost-effectiveness, the price of osimertinib must be reduced. Strategies such as those previously implemented in Thailand, including price negotiations, or the application of managed entry agreements (MEAs), could be utilized. These approaches can help Thai patients access the benefits of this drug for the treatment of NSCLC.

Discussion

Patients with early-stage NSCLC harboring EGFR mutations are at high risk of disease recurrence following tumor resection. Even with adjuvant chemotherapy, the risk of recurrence remains significant. Osimertinib has demonstrated efficacy for increasing disease-free survival and prolonging overall survival in the ADAURA trial. However, the high cost of osimertinib, at \$1,963.37 per month, necessitates an economic evaluation to assess its cost-effectiveness.

This study represents the first economic evaluation of osimertinib treatment for early-stage NSCLC in Thailand. Our results indicate that osimertinib provides an additional 2.36 QALYs and extends life expectancy by 2.81 years. However, it incurs an incremental cost of \$62,604.90, resulting in an ICER of \$26,474.02 per QALY gained, and the probability of osimertinib being cost-effective is 0% at the current Thai WTP threshold, necessitating an 85.07% price reduction to achieve cost-effectiveness.

Our findings align with previous cost-effectiveness studies of osimertinib in the same indication conducted in (Lemmon et al., 2022) and (Vila Pérez et al., 2023), both of which concluded that osimertinib, despite providing higher QALYs than placebo, is not cost-effective under their respective WTP thresholds without significant price reductions. Conversely, studies from (Zhou et al., 2022) and (Verhoek et al., 2023) found osimertinib to be cost-effective within their WTP thresholds.

However, our study differs from other economic evaluations of osimertinib treatment for early-stage NSCLC in several key aspects. Notably, we considered the timeline of recurrent disease, distinguishing between patients who experience recurrence within three years and those who recur after three years, as these groups receive different subsequent treatments. Furthermore, our study utilized updated five-year overall survival data from the ADAURA trial to calculate the transition probabilities to death for patients receiving osimertinib or placebo in the disease-free state. In contrast, other studies have used transition probabilities to death derived from the FLAURA trial, which assessed the efficacy of osimertinib in metastatic NSCLC patients.

In this analysis, the Markov model utilized three primary states. The recurrence state was further divided into local/regional recurrence and distant recurrence to comprehensively capture all clinical outcomes in patients after resection and adjuvant treatment for NSCLC. The model employed a lifetime horizon to track outcomes until all patients had died.

This study has several notable strengths. First, the model incorporated data on the proportions of subsequent treatments for local/regional and distant recurrence from specialists at three university hospitals in Thailand, ensuring the results reflect real-world clinical practice in Thailand. Second, the model considered the timeline of disease recurrence, with different treatments for recurrences within and beyond three years, following specialist recommendations. Third, the mortality rates were adjusted using age-specific mortality data for the Thai population, enhancing the relevance for local policymakers. Finally, input parameters and model were validated by lung oncologists and health economists, ensuring the robustness of our cost-effectiveness analyse.

However, there are limitations. The efficacy data for osimertinib were based solely on the ADAURA trial, as real-world evidence is still limited. Future studies incorporating more real-world data will be essential for validating these findings. Furthermore, while the model used five-year survival data without extrapolation to minimize bias, this approach might underrepresent long-term benefits. Utility values were sourced from international studies rather than direct patient data from the ADAURA trial, as the SF-36 questionnaire used in ADAURA is less suitable for the Thai population. Future research should address these limitations. If real-world evidence specific to the Thai population or primary data on costs and utility values in the Thai context become available, it would enhance the accuracy of the ICER results for Thailand.

Finally, while our study emphasizes the need to enhance cost-effectiveness and patient access, drug price negotiations and managed entry agreements (MEAs) are identified as crucial strategies. Drug price negotiations have previously proven successful in Thailand, as demonstrated by the reduction in the price of erlotinib for the treatment of advanced-stage EGFR-mutated NSCLC in Thai patients. Additionally, MEAs have emerged as a contemporary approach, involving arrangements between pharmaceutical companies and healthcare payers to manage the introduction of new drugs under conditions of uncertainty. These agreements may include outcome-based pricing, where the drug's price is linked to the health outcomes it delivers, or financial-based arrangements such as discounts, rebates, or price-volume agreements. By implementing MEAs, the financial burden on the healthcare system can potentially be reduced, making osimertinib more affordable and accessible to patients.

Conclusion

Adjuvant osimertinib for patients with resected EGFR-mutated NSCLC is not cost-effective under Thailand's current willingness-to-pay (WTP) threshold. The high drug cost significantly impacts the incremental cost-effectiveness ratio (ICER), making it a critical factor in the overall economic evaluation. Consequently, osimertinib's high price poses a substantial barrier to its cost-effectiveness despite its clinical benefits. To improve cost-effectiveness and patient access, drug cost negotiations and managed entry agreements (MEAs) are essential strategies. These approaches can potentially reduce the financial burden, making osimertinib more affordable. Nevertheless, the ICER results in this study have certain limitations, including the lack of real-world evidence and the use of utility values derived from international studies, which may not accurately reflect the ICER outcomes within the Thai population.

Acknowledgements

The authors thank Professor Dr. Siripen Supakankunti for consulting on the research. The study was a coordination between the Faculty of Economics, Chulalongkorn University, and the Faculty of Medicine Siriraj Hospital, Mahidol University.

Declaration of Interest Statement

The authors declare that they have no conflict of interests.

References

BANK OF THAILAND. (2023). Foreign Exchange Rate. https://www.bot.or.th/en/home.html

- Drug And Medical Supply Information Center, M. o. P. H. (2023). Reference cost of medicine. https://dmsic.moph.go.th/index./drugsearch/1
- Grutters, J. P., Joore, M. A., Wiegman, E. M., Langendijk, J. A., de Ruysscher, D., Hochstenbag, M., Botterweck, A., Lambin, P., & Pijls-Johannesma, M. (2010). Health-related quality of life in patients surviving non-small cell lung cancer. Thorax, 65(10), 903-907. https://doi.org/10.1136/thx.2010.136390
- Guideline Development Working Group. (2019). Guideline for Health Technology Assessment in Thailand Updated Edition.
- Hendriks, L. E., Kerr, K. M., Menis, J., Mok, T. S., Nestle, U., Passaro, A., Peters, S., Planchard, D., Smit, E. F., Solomon, B. J., Veronesi, G., & Reck, M. (2023). Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Annals of Oncology, 34(4), 339-357. https://doi.org/10.1016/j.annonc.2022.12.009
- Herbst, R. S., Wu, Y.-L., John, T., Grohe, C., Majem, M., Wang, J., Kato, T., Goldman, J. W., Laktionov, K., Kim, S.-W., Yu, C.-J., Vu, H. V., Lu, S., Lee, K. Y., Mukhametshina, G., Akewanlop, C., Marinis, F. d., Bonanno, L., Domine, M., . . . Tsuboi, M. (2023). Adjuvant Osimertinib for Resected EGFR-Mutated Stage IB-IIIA Non–Small-Cell Lung Cancer: Updated Results From the Phase III Randomized ADAURA Trial. Journal of Clinical Oncology, 41(10), 1830-1840. https://doi.org/10.1200/jco.22.02186
- Kangwanrattanakul, K. (2022). A systematic review of health state utility values in Thai cancer patients. Expert Review of Pharmacoeconomics & Outcomes Research, 22(8), 1171-1186. https://doi.org/10.1080/14737167.2022.2123796

- Lemmon, C. A., Zabor, E. C., & Pennell, N. A. (2022). Modeling the Cost-Effectiveness of Adjuvant Osimertinib for Patients with Resected EGFR-mutant Non-Small Cell Lung Cancer. The Oncologist, 27(5), 407-413. https://doi.org/10.1093/oncolo/oyac021
- Limwattananon, C., Limwattananon, S., Waleekhachonloet, O., & Rattanachotphanit, T. (2018). Costeffectiveness analysis of policy options on first-line treatments for advanced, non-small cell lung cancer in Thailand. Lung Cancer, 120, 91-97.
- Lu, S., Kato, T., Dong, X., Ahn, M.-J., Quang, L.-V., Soparattanapaisarn, N., Inoue, T., Wang, C.-L., Huang, M., Yang, J. C.-H., Cobo, M., Özgüroğlu, M., Casarini, I., Khiem, D.-V., Sriuranpong, V., Cronemberger, E., Takahashi, T., Runglodvatana, Y., Chen, M., . . . Ramalingam, S. S. (2024). Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. New England Journal of Medicine. https://doi.org/doi:10.1056/NEJMoa2402614
- Ministry of Public Health. (2022). Public Health Statistics A.D.2022. https://spd.moph.go.th/wpcontent/uploads/2023/11/Hstatistic65.pdf
- National Cancer Institute. (2021). Hospital-based cancer registry. https://www.nci.go.th/th/cancer_record/download/HOSPITAL-BASED_2021.pdf
- National Comprehensive Cancer Network. (2024). Non-Small Cell Lung Cancer (Version1.2024). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
- Papadimitrakopoulou, V. A., Mok, T. S., Han, J. Y., Ahn, M. J., Delmonte, A., Ramalingam, S. S., Kim, S. W., Shepherd, F. A., Laskin, J., He, Y., Akamatsu, H., Theelen, W. S. M. E., Su, W. C., John, T., Sebastian, M., Mann, H., Miranda, M., Laus, G., Rukazenkov, Y., & Wu, Y. L. (2020). Osimertinib versus platinum–pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Annals of Oncology, 31(11), 1536-1544. https://doi.org/10.1016/j.annonc.2020.08.2100
- Permsuwan, U., Niamhun, N., Tanatip, N., & Thongprasert, S. (2014). Epidermal Growth Factor Receptor Mutation Testing in Thailand: A Cost-Utility Analysis. Value in Health Regional Issues, 3, 39-43. https://doi.org/https://doi.org/10.1016/j.vhri.2013.12.001
- Ramalingam, S. S., Kato, T., Dong, X., Ahn, M.-J., Quang, L.-V., Soparattanapaisarn, N., Inoue, T., Wang, C.-L., Huang, M., & Yang, J. C.-H. (2024). Osimertinib (osi) after definitive chemoradiotherapy (CRT) in patients (pts) with unresectable stage (stg) III epidermal growth factor receptor-mutated (EGFRm) NSCLC: Primary results of the phase 3 LAURA study. In: American Society of Clinical Oncology.
- Ramalingam, S. S., Vansteenkiste, J., Planchard, D., Cho, B. C., Gray, J. E., Ohe, Y., Zhou, C., Reungwetwattana, T., Cheng, Y., Chewaskulyong, B., Shah, R., Cobo, M., Lee, K. H., Cheema, P., Tiseo, M., John, T., Lin, M.-C., Imamura, F., Kurata, T., . . . Soria, J.-C. (2019). Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. New England Journal of Medicine, 382(1), 41-50. https://doi.org/10.1056/NEJMoa1913662

- Reechaipichitkul, W., Thavornpitak, Y., & Sutra, S. (2014). Burden of adult pneumonia in Thailand: a nationwide hospital admission data 2010. J Med Assoc Thai, 97(3), 283-292.
- Reungwetwattana, T., Oranratnachai, S., Puataweepong, P., Tangsujaritvijit, V., & Cherntanomwong,P. (2020). Lung cancer in Thailand. Journal of Thoracic Oncology, 15(11), 1714-1721.
- Riewpaiboon, A. (2009). Standard cost list for health technology assessment. http://www.hitap.net/costingmenu/
- Riewpaiboon, A., Sirisuksan, V., Rungmaitree, S., & Chokephaibulkit, K. (2020). Economic burden of pneumonia, sepsis and meningitis among children aged up to 5 years old at a tertiary care hospital in Thailand: an input for economic evaluation of vaccination. Pharmaceutical Sciences Asia, 47(4).
- Shepherd, F. A., Dancey, J., Ramlau, R., Mattson, K., Gralla, R., O'Rourke, M., Levitan, N., Gressot,
 L., Vincent, M., Burkes, R., Coughlin, S., Kim, Y., & Berille, J. (2000). Prospective
 Randomized Trial of Docetaxel Versus Best Supportive Care in Patients With Non–Small-Cell
 Lung Cancer Previously Treated With Platinum-Based Chemotherapy. Journal of Clinical
 Oncology, 18(10), 2095-2103. https://doi.org/10.1200/jco.2000.18.10.2095
- Siriraj hospital. (2023). Laboratory examination manual, Department of Clinical Pathology Faculty of Medicine Siriraj Hospital. https://www.si.mahidol.ac.th/th/manual/Project/service.html
- Spigel, D. R., Faivre-Finn, C., Gray, J. E., Vicente, D., Planchard, D., Paz-Ares, L., Vansteenkiste, J. F., Garassino, M. C., Hui, R., Quantin, X., Rimner, A., Wu, Y.-L., Özgüroğlu, M., Lee, K. H., Kato, T., Wit, M. d., Kurata, T., Reck, M., Cho, B. C., . . . Antonia, S. J. (2022). Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 40(12), 1301-1311. https://doi.org/10.1200/jco.21.01308
- Sukauichai, S., Maneenil, K., Supavavej, A., Paul, V., Benjawongsathien, D., Chantharakhit, C., Neesanun, S., Chayangsu, C., Bowornkitiwong, T., & Sukaraphat, N. (2022). EGFR mutationpositive lung cancer in real-world treatment outcomes: A multicenter study from Thailand. Asian Pacific Journal of Cancer Care, 7(4), 643-650.
- Thaweethamcharoen, T., Sakulbumrungsil, R., Nopmaneejumruslers, C., & Vasuvattakul, S. (2014).
 Cost-Utility Analysis of Erythropoietin for Anemia Treatment in Thai End-Stage Renal Disease
 Patients with Hemodialysis. Value Health Reg Issues, 3, 44-49.
 https://doi.org/10.1016/j.vhri.2014.01.001
- The National Cancer Institute Library. (2015). Clinical practice guideline for lung cancer Thailand. https://drive.google.com/file/d/1Z7KGYOdQXYeQBf_1YpxDwgE7_sUOZokj/view
- Tsuboi, M., Herbst, R. S., John, T., Kato, T., Majem, M., Grohé, C., Wang, J., Goldman, J. W., Lu, S.,
 Su, W.-C., de Marinis, F., Shepherd, F. A., Lee, K. H., Le, N. T., Dechaphunkul, A., Kowalski,
 D., Poole, L., Bolanos, A., Rukazenkov, Y., & Wu, Y.-L. (2023). Overall Survival with

Osimertinib in Resected EGFR-Mutated NSCLC. New England Journal of Medicine, 389(2), 137-147. https://doi.org/10.1056/NEJMoa2304594

- Verhoek, A., Cheema, P., Melosky, B., Samson, B., Shepherd, F. A., de Marinis, F., John, T., Wu, Y.-L., Heeg, B., & Van Dalfsen, N. (2023). Evaluation of Cost-Effectiveness of Adjuvant Osimertinib in Patients with Resected EGFR Mutation-Positive Non-small Cell Lung Cancer. PharmacoEconomics-Open, 7(3), 455-467.
- Vila Pérez, A., Alegre-del Rey, E. J., Fénix-Caballero, S., Špacírová, Z., Rosado Varela, P., & Olry de Labry Lima, A. (2023). Economic evaluation of adjuvant therapy with osimertinib in patients with early-stage non–small cell lung cancer and mutated EGFR. Supportive Care in Cancer, 32(1), 67. https://doi.org/10.1007/s00520-023-08239-8
- WorldHealthOrganization.(2022).Incidencecancer.https://gco.iarc.fr/today/en/dataviz/tables?mode=cancer&group_populations=0&multiple_populations=1&populations=764
- Wu, Y.-L., Tsuboi, M., He, J., John, T., Grohe, C., Majem, M., Goldman, J. W., Laktionov, K., Kim, S.-W., Kato, T., Vu, H.-V., Lu, S., Lee, K.-Y., Akewanlop, C., Yu, C.-J., de Marinis, F., Bonanno, L., Domine, M., Shepherd, F. A., . . . Herbst, R. S. (2020). Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal of Medicine, 383(18), 1711-1723. https://doi.org/10.1056/NEJMoa2027071
- Zhou, X., Du, J., Xu, G., Chen, C., Zheng, B., & Chen, J. (2022). Cost-effectiveness of osimertinib versus placebo in resected EGFR-mutated non-small cell lung cancer in China. Cancer Medicine, 11(23), 4449-4456.

Appendix

Table 1S: The model input parameters

Input Parameter	Distribution	Base case	Max	Min	Reference			
		values						
Transition probabil	Transition probabilities (4 weeks)							
Disease-free to recu	Disease-free to recurrence							
Placebo arm	Placebo arm							
DF to local RD	Beta	0.0044	0.0055	0.0033	(Herbst et al., 2023)			
chemoradiotherapy								

DF to distant RD	Beta	0.0011	0.0013	0.0008	(Herbst et al., 2023)
Osimertinib					
DF to distant RD	Beta	0.0057	0.0071	0.0042	(Herbst et al., 2023)
TKIs					
DF to distant RD	Beta	0.0004	0.0004	0.0003	(Herbst et al., 2023)
BSC					
Osimertinib arm		·		·	
Recurrent within 3	years				
DF to local RD	Beta	0.0023	0.0029	0.0017	(Herbst et al., 2023)
chemoradiotherapy					
DF to distant RD	Beta	0.0002	0.0003	0.0002	(Herbst et al., 2023)
Osimertinib plus					
local treatment					
DF to distant RD	Beta	0.0025	0.0032	0.0019	(Herbst et al., 2023)
PDC					
DF to distant RD	Beta	0.0001	0.0001	0.0001	(Herbst et al., 2023)
BSC					
Recurrent after 3 ye	ears	1			
DF to local RD	Beta	0.0023	0.0029	0.0017	(Herbst et al., 2023)
chemoradiotherapy					
DF to distant RD	Beta	0.0004	0.0005	0.0003	(Herbst et al., 2023)
Osimertinib					
DF to distant RD	Beta	0.0023	0.0029	0.0017	(Herbst et al., 2023)
TKIs					
DF to distant RD	Beta	0.0001	0.0002	0.0001	(Herbst et al., 2023)
BSC					

Disease-free to Deat	th				
Placebo arm					
DF to death	Beta	0.0025	0.0031	0.0019	(Tsuboi et al., 2023)
Osimertinib arm					
DF to death	Beta	0.0013	0.0017	0.0010	(Tsuboi et al., 2023)
Local/regional recu	rrence to deat	h			
Placebo arm					
Local RD	Beta	0.0130	0.0163	0.0098	(Ramalingam et al.,
Chemoradiotherapy					2024)
to death					
Osimertinib arm					
Recurrent within 3	years				
Local RD	Beta	0.0130	0.0163	0.0098	(Ramalingam et al.,
Chemoradiotherapy					2024)
to death					
Recurrent after 3 ye	ears				
Local RD	Beta	0.0130	0.0163	0.0098	(Ramalingam et al.,
Chemoradiotherapy					2024)
to death					
Distant recurrence	to death				1
Placebo arm					
Distant RD	Beta	0.0153	0.0192	0.0115	(Ramalingam et al.,
Osimertinib to					2019)
death					
Distant RD TKIs to	Beta	0.0193	0.0242	0.0145	(Ramalingam et al.,
death					2019)

Beta	0.1199	0.1498	0.0899	(Shepherd et al.,			
				2000)			
years							
Beta	0.0153	0.0192	0.0115	(Ramalingam et al.,			
				2019)			
Beta	0.0404	0.0505	0.0303	(Mok et al., 2009)			
Beta	0.1199	0.1498	0.0899	(Shepherd et al.,			
				2000)			
ears							
Beta	0.0153	0.0192	0.0115	(Ramalingam et al.,			
				2019)			
Beta	0.0193	0.0242	0.0145	(Ramalingam et al.,			
				2019)			
Beta	0.1199	0.1498	0.0899	(Shepherd et al.,			
				2000)			
Local/regional recurrence to distant recurrence							
Beta	0.0084	0.0105	0.0063	(Spigel et al., 2022)			
	years Beta Beta Beta Beta Beta Beta Beta Beta	years Beta 0.0153 Beta 0.0404 Beta 0.1199 ears Beta 0.0153 Beta 0.0153 Beta 0.0193 Beta 0.1199	years Beta 0.0153 0.0192 Beta 0.0404 0.0505 Beta 0.1199 0.1498 Beta 0.0153 0.0192 Beta 0.0153 0.0192 Beta 0.1199 0.1498 Beta 0.0153 0.0192 Beta 0.0193 0.0242 Beta 0.1199 0.1498 Beta 0.0193 0.0242 Beta 0.1199 0.1498	years Beta 0.0153 0.0192 0.0115 Beta 0.0404 0.0505 0.0303 Beta 0.1199 0.1498 0.0899 ars Image: Strain Str			

Local RD	Beta	0.0449	0.0562	0.0337	(Spigel et al., 2022)
chemoradiotherapy					
to Distant RD TKIs					
Local RD	Beta	0.0028	0.0035	0.0021	(Spigel et al., 2022)
chemoradiotherapy					(
to Distant RD BSC					
Osimertinib arm					
Recurrent within 3	years				
Local RD	Beta	0.0538	0.0673	0.0404	(Spigel et al., 2022)
chemoradiotherapy					
to Distant RD PDC					
Local RD	Beta	0.0023	0.0028	0.0017	(Spigel et al., 2022)
chemoradiotherapy					
to Distant RD BSC					
Recurrent after 3 ye	ears				
Local RD	Beta	0.0084	0.0105	0.0063	(Spigel et al., 2022)
chemoradiotherapy					
to Distant RD					
Osimertinib					
Local RD	Beta	0.0449	0.0562	0.0337	(Spigel et al., 2022)
chemoradiotherapy					
to Distant RD TKIs					
Local RD	Beta	0.0028	0.0035	0.0021	(Spigel et al., 2022)
	Deta	0.0020	0.0035	0.0021	(Spiger et al., 2022)
chemoradiotherapy					
to Distant RD BSC					
Cost					

6							
Drug acquisition cost (2023; USD per dosage unit)							
Gamma	1963.37	2454.21	1472.53	Primary data			
st (2023; US	D per dosage u	nit)					
ll cycle treat	ment)						
years							
Gamma	816.77	1020.96	612.58	(Drug And Medical			
				Supply Information			
				Center, 2023),			
				(Riewpaiboon, 2009)			
Gamma	3063.45	3829.31	2297.59	Primary data			
Gamma	1708.70	2135.87	1281.52	(Drug And Medical			
				Supply Information			
				Center, 2023)			
Gamma	34.87	43.58	26.15	(Limwattananon et			
				al., 2018)			
ears							
Gamma	816.77	1020.96	612.58	(Drug And Medical			
				Supply Information			
				Center, 2023)			
Gamma	6065.94	7582.42	4549.45	Primary data			
Gamma	1565.85	1957.32	1174.39	(Drug And Medical			
				Supply Information			
				Center, 2023)			
	st (2023; US Gamma st (2023; US Il cycle treat years Gamma Gamma Gamma Gamma Gamma	st (2023; USD per dosage un Gamma 1963.37 st (2023; USD per dosage un Il cycle treatment) years 316.77 Gamma 3063.45 Gamma 3063.45 Gamma 34.87 camma 816.77 Gamma 6065.94	st (2023; USD per dosage unit) Gamma 1963.37 2454.21 st (2023; USD per dosage unit) gamma 816.77 1020.96 Gamma 3063.45 3829.31 Gamma 3063.45 3829.31 Gamma 1708.70 2135.87 Gamma 34.87 43.58 gamma S4.6.77 1020.96 Gamma 816.77 1020.96 Gamma 6065.94 7582.42	St (2023; USD per dosage unit) Gamma 1963.37 2454.21 1472.53 st (2023; USD per dosage unit) st (2023; USD per dosage unit) I cycle treatment) gamma 816.77 1020.96 612.58 Gamma 3063.45 3829.31 2297.59 Gamma 1708.70 2135.87 1281.52 Gamma 34.87 43.58 26.15 Gamma Stars Interval Interval Interval Gamma 816.77 1020.96 612.58 Gamma 816.77 1020.96 612.58 Gamma 816.77 1020.96 612.58 Gamma 816.77 1020.96 612.58			

BSC	Gamma	43.15	53.94	32.36	(Limwattananon et
					al., 2018)
Placebo arm (All cy	cle treatment)				
chemoradiotherapy	Gamma	816.77	1020.96	612.58	(Drug And Medical
					Supply Information
					Center, 2023)
Osimertinib	Gamma	6065.94	7582.42	4549.45	Primary data
TKIs	Gamma	1244.29	1555.36	933.22	(Drug And Medical
					Supply Information
					Center, 2023)
BSC	Gamma	43.15	53.94	32.36	(Limwattananon et
					al., 2018)
Administration cost	t (2023; USD p	er time)			1
Cost of	Gamma	265.26	331.57	198.94	(Riewpaiboon, 2009)
thoracotomy with					
resection of					
thoracic tumor					
Cost of specialist	Gamma	9.15	11.44	6.86	(Riewpaiboon, 2009)
physician					
Cost of nurse	Gamma	2.17	2.71	1.62	(Riewpaiboon, 2009)
Cost of dispending	Gamma	2.20	2.75	1.65	(Riewpaiboon, 2009)
drugs					
Cost of	Gamma	38.79	48.49	29.10	(Riewpaiboon, 2009)
radiotherapy					
Cost of mixed	Gamma	6.98	8.73	5.24	(Riewpaiboon, 2009)
chemotherapy					

Laboratory test cos	sts (2023; US	D per time)			
EGFR mutation	Gamma	213.92	267.40	160.44	(Siriraj hospital, 2023)
computerized	Gamma	218.15	272.69	163.62	(Riewpaiboon, 2009)
tomography lung					
X-ray	Gamma	7.40	9.25	5.55	(Riewpaiboon, 2009)
CBC	Gamma	3.91	4.89	2.93	(Riewpaiboon, 2009)
Electrolyte	Gamma	3.49	4.36	2.62	(Riewpaiboon, 2009)
Blood Urea	Gamma	2.17	2.71	1.62	(Riewpaiboon, 2009)
Nitrogen					
Liver function test	Gamma	15.26	19.07	11.44	(Riewpaiboon, 2009)
EKG	Gamma	13.09	16.37	9.82	(Riewpaiboon, 2009)
Creatinine	Gamma	2.17	2.71	1.62	(Riewpaiboon, 2009)
Adverse event costs	s (2023; USD	per treatment)		
Diarrhea	Gamma	4.51	5.63	3.38	(Permsuwan et al.,
					2014)
Paronychia	Gamma	5.57	6.96	4.18	(Permsuwan et al.,
					2014)
Dry skin	Gamma	2.50	3.13	1.88	(Permsuwan et al.,
					2014)
Pruritis	Gamma	4.69	5.87	3.52	(Permsuwan et al.,
					2014)
Rash/stomatitis	Gamma	4.69	5.87	3.52	(Permsuwan et al.,
					2014)
Dermatitis	Gamma	4.69	5.87	3.52	(Permsuwan et al.,
acneiform					2014)

Pneumonitis	Gamma	260.91	326.14	195.69	(Reechaipichitkul et
					al., 2014)
Direct non-medical	costs (2023; U	SD per time)			
Cost of	Gamma	4.61	5.76	3.46	(Riewpaiboon, 2009)
transportation to					
hospital of patient					
Cost of	Gamma	4.61	5.76	3.46	(Riewpaiboon, 2009)
transportation to					
hospital of					
caregiver					
Cost of food of	Gamma	1.70	2.12	1.27	(Riewpaiboon, 2009)
patient					
Cost of food of	Gamma	1.70	2.12	1.27	(Riewpaiboon, 2009)
caregiver					
Indirect costs (2023	; USD per time	e)			
Cost of	Gamma	5.88	7.35	4.41	(Riewpaiboon, 2009)
productivity loss of					
caregiver					
Utility				<u> </u>	
Placebo arm					
diseas-free survival	state				
Placebo	Beta	0.83	1.0	0.62	(Zhou et al., 2022),
					(Verhoek et al., 2023),
					(Lemmon et al.,
					2022), (Vila Pérez et
					al., 2023)
			1		

local/regional recur	rence state				
Chemoradiotherapy	Beta	0.76	0.95	0.57	(Grutters et al., 2010)
Distant recurrence	state				
Osimertinib	Beta	0.67	0.84	0.50	(Limwattananon et
					al., 2018)
TKIs	Beta	0.67	0.83	0.50	(Limwattananon et
					al., 2018)
BSC	Beta	0.27	0.34	0.20	(Kangwanrattanakul,
					2022)
Osimertinib arm	<u> </u>	I	l	I	
diseas-free survival	state				
Osimertinib	Beta	0.82	1.00	0.62	(Zhou et al., 2022),
					(Verhoek et al., 2023)
					(Lemmon et al.,
					2022), (Vila Pérez et
					al., 2023)
local/regional recur	rence state				
Chemoradiotherapy	Beta	0.76	0.95	0.57	(Grutters et al., 2010)
Distant recurrence	state (Befor	re 3 year recuri	rence)		
Osimertinib+local	Beta	0.67	0.84	0.50	(Limwattananon et
					al., 2018)
Platinum doublet	Beta	0.54	0.68	0.41	(Limwattananon et
chemotherapy					al., 2018)
BSC	Beta	0.27	0.34	0.20	(Kangwanrattanakul,
					2022)
Distant recurrence	state (After	· 3 year recurre	ence)	<u> </u>	

Osimertinib	Beta	0.67	0.84	0.50	(Limwattananon et
					al., 2018)
TKIs	Beta	0.67	0.84	0.50	(Limwattananon et
					al., 2018)
BSC	Beta	0.27	0.34	0.20	(Kangwanrattanakul,
					2022)

DF, Disease-free; RD, Recurrence disease; TKIs, Tyrosine kinase inhibitors; BSC, best supportive care;

PDC, platinum doublet chemotherapy; CBC, Complete Blood Count; EGFR, Epidermal Growth Factor

Receptor